Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T06:13:30.269Z Has data issue: false hasContentIssue false

Comparing neuropsychological, typical, and ADNI criteria for the diagnosis of mild cognitive impairment in Vietnam-era veterans

Published online by Cambridge University Press:  24 January 2024

Monica T. Ly*
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
Jennifer Adler
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
Adan F. Ton Loy
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
Emily C. Edmonds
Affiliation:
Banner Alzheimer’s Institute, Tucson, AZ, USA Departments of Neurology and Psychology, University of Arizona, Tucson, AZ, USA
Mark W. Bondi
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
Lisa Delano-Wood
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA Center for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
*
Corresponding author: M. Ly; Email: monicaly@gmail.com

Abstract

Objective:

Neuropsychological criteria for mild cognitive impairment (MCI) more accurately predict progression to Alzheimer’s disease (AD) and are more strongly associated with AD biomarkers and neuroimaging profiles than ADNI criteria. However, research to date has been conducted in relatively healthy samples with few comorbidities. Given that history of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are risk factors for AD and common in Veterans, we compared neuropsychological, typical (Petersen/Winblad), and ADNI criteria for MCI in Vietnam-era Veterans with histories of TBI or PTSD.

Method:

267 Veterans (mean age = 69.8) from the DOD-ADNI study were evaluated for MCI using neuropsychological, typical, and ADNI criteria. Linear regressions adjusting for age and education assessed associations between MCI status and AD biomarker levels (cerebrospinal fluid [CSF] p-tau181, t-tau, and Aβ42) by diagnostic criteria. Logistic regressions adjusting for age and education assessed the effects of TBI severity and PTSD symptom severity simultaneously on MCI classification by each criteria.

Results:

Agreement between criteria was poor. Neuropsychological criteria identified more Veterans with MCI than typical or ADNI criteria, and were associated with higher CSF p-tau181 and t-tau. Typical and ADNI criteria were not associated with CSF biomarkers. PTSD symptom severity predicted MCI diagnosis by neuropsychological and ADNI criteria. History of moderate/severe TBI predicted MCI by typical and ADNI criteria.

Conclusions:

MCI diagnosis using sensitive neuropsychological criteria is more strongly associated with AD biomarkers than conventional diagnostic methods. MCI diagnostics in Veterans would benefit from incorporation of comprehensive neuropsychological methods and consideration of the impact of PTSD.

Type
Research Article
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press on behalf of International Neuropsychological Society.
Copyright
© U.S. Department of Veterans Affairs, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279. https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefGoogle ScholarPubMed
Barnes, D. E., Byers, A. L., Gardner, R. C., Seal, K. H., Boscardin, W. J., & Yaffe, K. (2018). Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurology, 75(9), 1055. https://doi.org/10.1001/jamaneurol.2018.0815 CrossRefGoogle ScholarPubMed
Bhattarai, J“Jackie”, Oehlert, M. E., Multon, K. D., & Sumerall, S. W. (2019). Dementia and cognitive impairment among U.S. Veterans with a history of MDD or PTSD: A retrospective cohort study based on sex and race. Journal of Aging and Health, 31(8), 13981422. https://doi.org/10.1177/0898264318781131 CrossRefGoogle ScholarPubMed
Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Charney, D. S., & Keane, T. M. (1998). Clinician-administered PTSD scale for DSM-IV. National Center for Posttraumatic Stress Disorder.Google Scholar
Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., Nation, D. A., Libon, D. J., Au, R., Galasko, D., Salmon, D. P., & for the Alzheimer’s Disease Neuroimaging Initiative (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1), 275289. https://doi.org/10.3233/jad-140276 CrossRefGoogle ScholarPubMed
Bondi, M. W., Jak, A. J., Delano-Wood, L., Jacobson, M. W., Delis, D. C., & Salmon, D. P. (2008). Neuropsychological contributions to the early identification of Alzheimer’s disease. Neuropsychology Review, 18(1), 7390. https://doi.org/10.1007/s11065-008-9054-1 CrossRefGoogle Scholar
Brooks, B. L., Iverson, G. L., & White, T. (2007). Substantial risk of “Accidental MCI” in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society, 13(3), 490500. https://doi.org/10.1017/s1355617707070531 CrossRefGoogle ScholarPubMed
Burmester, B., Leathem, J., & Merrick, P. (2016). Subjective cognitive complaints and objective cognitive function in aging: A systematic review and meta-analysis of recent cross-sectional findings. Neuropsychology Review, 26(4), 376393. https://doi.org/10.1007/s11065-016-9332-2 CrossRefGoogle ScholarPubMed
Carlson, K. F., Kehle, S. M., Meis, L. A., Greer, N., MacDonald, R., Rutks, I., Sayer, N. A., Dobscha, S. K., & Wilt, T. J. (2011). Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder. Journal of Head Trauma Rehabilitation, 26(2), 103115. https://doi.org/10.1097/htr.0b013e3181e50ef1 CrossRefGoogle ScholarPubMed
Clark, A. L., Weigand, A. J., Bangen, K. J., Thomas, K. R., Eglit, G. M. L., Bondi, M. W., Delano‐Wood, L., & for the Alzheimer’s Disease Neuroimaging Initiative (2021). Higher cerebrospinal fluid tau is associated with history of traumatic brain injury and reduced processing speed in Vietnam-era veterans: A department of defense Alzheimer’s disease neuroimaging initiative (DOD-ADNI) study. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12239. https://doi.org/10.1002/dad2.12239 Google Scholar
Clark, L. R., Delano-Wood, L., Libon, D. J., McDonald, C. R., Nation, D. A., Bangen, K. J., Jak, A. J., Au, R., Salmon, D. P., & Bondi, M. W. (2013). Are empirically-derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(6), 635645. https://doi.org/10.1017/s1355617713000313 CrossRefGoogle ScholarPubMed
Clouston, S. A. P., Diminich, E. D., Kotov, R., Pietrzak, R. H., Richards, M., Spiro, A., Deri, Y., Carr, M., Yang, X., Gandy, S., Sano, M., Bromet, E. J., & Luft, B. J. (2019). Incidence of mild cognitive impairment in World Trade Center responders: Long-term consequences of re-experiencing the events on 9/11/2001. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11(1), 628636. https://doi.org/10.1016/j.dadm.2019.07.006 Google ScholarPubMed
Desmarais, P., Weidman, D., Wassef, Aéanne, Bruneau, M.-A.ée, Friedland, J., Bajsarowicz, P., Thibodeau, M.-P., Herrmann, N., & Nguyen, Q. D. (2020). The interplay between post-traumatic stress disorder and dementia: A systematic review. The American Journal of Geriatric Psychiatry, 28(1), 4860. https://doi.org/10.1016/j.jagp.2019.08.006 CrossRefGoogle ScholarPubMed
Dubois, B., Villain, N., Frisoni, G. B., Rabinovici, G. D., Sabbagh, M., Cappa, S., Bejanin, A., Bombois, S., Epelbaum, S., Teichmann, M., Habert, M.-O., Nordberg, A., Blennow, K., Galasko, D., Stern, Y., Rowe, C. C., Salloway, S., Schneider, L. S., Cummings, J. L., & Feldman, H. H. (2021). Clinical diagnosis of Alzheimer’s disease: Recommendations of the international working group. The Lancet Neurology, 20(6), 484496. https://doi.org/10.1016/s1474-4422(21)00066-1 CrossRefGoogle ScholarPubMed
Ebenau, J. L., Pelkmans, W., Verberk, I. M. W., Verfaillie, S. C. J., van den Bosch, K. A., van Leeuwenstijn, M., Collij, L. E., Scheltens, P., Prins, N. D., Barkhof, F., van Berckel, B. N. M., Teunissen, C. E., & van der Flier, W. M. (2022). Association of CSF, plasma, and imaging markers of neurodegeneration with clinical progression in people with subjective cognitive decline. Neurology, 98(13), e1315e1326. https://doi.org/10.1212/wnl.0000000000200035 CrossRefGoogle ScholarPubMed
Edmonds, E. C., Ard, M. C., Edland, S. D., Galasko, D. R., Salmon, D. P., & Bondi, M. W. (2017). Unmasking the benefits of donepezil via psychometrically precise identification of mild cognitive impairment: A secondary analysis of the ADCS vitamin E and donepezil in MCI study. Alzheimer’s & Dementia : Translational Research & Clinical Interventions, 4(1), 1118. https://doi.org/10.1016/j.trci.2017.11.001 Google ScholarPubMed
Edmonds, E. C., Delano-Wood, L., Galasko, D. R., Salmon, D. P., Bondi, M. W., & Initiative, A. D. N. (2014). Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. Journal of the International Neuropsychological Society, 20(8), 836847. https://doi.org/10.1017/s135561771400068x CrossRefGoogle ScholarPubMed
Edmonds, E. C., Delano‐Wood, L., Clark, L. R., Jak, A. J., Nation, D. A., McDonald, C. R., Libon, D. J., Au, R., Galasko, D., Salmon, D. P., Bondi, M. W., & Alzheimer’s Disease Neuroimaging Initiative (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415424. https://doi.org/10.1016/j.jalz.2014.03.005 CrossRefGoogle ScholarPubMed
Edmonds, E. C., Eppig, J., Bondi, M. W., Leyden, K. M., Goodwin, B., Delano-Wood, L., McDonald, C. R., & For the Alzheimer’s Disease Neuroimaging Initiative (2016). Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology, 87(20), 21082116. https://doi.org/10.1212/wnl.0000000000003326 CrossRefGoogle Scholar
Edmonds, E. C., Smirnov, D. S., Thomas, K. R., Graves, L. V., Bangen, K. J., Delano-Wood, L., Galasko, D. R., Salmon, D. P., & Bondi, M. W. (2021). Data-driven vs consensus diagnosis of MCI. Neurology, 97(13), e1288e1299. https://doi.org/10.1212/wnl.0000000000012600 CrossRefGoogle ScholarPubMed
Edmonds, E. C., Weigand, A. J., Thomas, K. R., Eppig, J., Delano-Wood, L., Galasko, D. R., Salmon, D. P.,& Bondi, M. W. (2018). Increasing inaccuracy of self-reported subjective cognitive complaints Over 24 Months in empirically derived subtypes of mild cognitive impairment. Journal of the International Neuropsychological Society, 24(8), 842853. https://doi.org/10.1017/s1355617718000486 CrossRefGoogle ScholarPubMed
Elman, J. A., Panizzon, M. S., Gustavson, D. E., Franz, C. E., Sanderson-Cimino, M. E., Lyons, M. J., & Kremen, W. S. (2020). Amyloid-β positivity predicts cognitive decline but cognition predicts progression to amyloid-β positivity. Biological Psychiatry, 87(9), 819828. https://doi.org/10.1016/j.biopsych.2019.12.021 CrossRefGoogle ScholarPubMed
Eppig, J. S., Edmonds, E. C., Campbell, L., Sanderson-Cimino, M., Delano-Wood, L., Bondi, M. W., & for the Alzheimer’s Disease Neuroimaging Initiative (2017). Statistically derived subtypes and associations with cerebrospinal fluid and genetic biomarkers in mild cognitive impairment: A latent profile analysis. Journal of the International Neuropsychological Society, 23(7), 564576. https://doi.org/10.1017/s135561771700039x CrossRefGoogle ScholarPubMed
Farias, S. T., Mungas, D., Harvey, D. J., Simmons, A., Reed, B. R., & DeCarli, C. (2011). The measurement of everyday cognition: Development and validation of a short form of the everyday cognition scales. Alzheimer’s & Dementia, 7(6), 593601. https://doi.org/10.1016/j.jalz.2011.02.007 CrossRefGoogle Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. https://doi.org/10.1016/0022-3956(75)90026-6 CrossRefGoogle ScholarPubMed
French, L. M., Lange, R. T., & Brickell, T. (2014). Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury. Journal of Rehabilitation Research and Development, 51(6), 933950. https://doi.org/10.1682/jrrd.2013.10.0226 CrossRefGoogle ScholarPubMed
Gardner, R. C., Bahorik, A., Kornblith, E. S., Allen, I. E., Plassman, B. L., & Yaffe, K. (2022). Systematic review, meta-analysis, and population attributable risk of dementia associated with traumatic brain injury in civilians and veterans. Journal of Neurotrauma, 40(7-8), 620634. https://doi.org/10.1089/neu.2022.0041 CrossRefGoogle ScholarPubMed
Greer, N., Sayer, N. A., Spoont, M., Taylor, B. C., Ackland, P. E., MacDonald, R., McKenzie, L., Rosebush, C., & Wilt, T. J. (2020). Prevalence and severity of psychiatric disorders and suicidal behavior in service members and veterans with and without traumatic brain injury. Systematic Review. Journal of Head Trauma Rehabilitation, 35(1), 113. https://doi.org/10.1097/htr.0000000000000478 CrossRefGoogle ScholarPubMed
Günak, M. M., Billings, J., Carratu, E., Marchant, N. L., Favarato, G., & Orgeta, V. (2020). Post-traumatic stress disorder as a risk factor for dementia: Systematic review and meta-analysis. The British Journal of Psychiatry, 217(5), 600608. https://doi.org/10.1192/bjp.2020.150 CrossRefGoogle ScholarPubMed
Hansson, O., Seibyl, J., Stomrud, E., Zetterberg, H., Trojanowski, J. Q., Bittner, T., Lifke, V., Corradini, V., Eichenlaub, U., Batrla, R., Buck, K., Zink, K., Rabe, C., Blennow, K., Shaw, L. M., & for the Swedish BioFINDER study groupAlzheimer’s Disease Neuroimaging Initiative (2018). CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in bioFINDER and ADNI cohorts. Alzheimer’s & Dementia, 14(11), 14701481. https://doi.org/10.1016/j.jalz.2018.01.010 CrossRefGoogle ScholarPubMed
Jack, C. R. Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., Sperling, R., Masliah, E., Ryan, L., & Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535562. https://doi.org/10.1016/j.jalz.2018.02.018 CrossRefGoogle Scholar
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(5), 368375. https://doi.org/10.1097/jgp.0b013e31819431d5 CrossRefGoogle ScholarPubMed
Kang, J‐Hee, Korecka, M., Figurski, M. J., Toledo, J. B., Blennow, K., Zetterberg, H., Waligorska, T., Brylska, M., Fields, L., Shah, N., Soares, H., Dean, R. A., Vanderstichele, H., Petersen, R. C., Aisen, P. S., Saykin, A. J., Weiner, M. W., Trojanowski, J. Q., Shaw, L. M., & Alzheimer’s Disease Neuroimaging Initiative (2015). The Alzheimer’s disease neuroimaging initiative 2 biomarker core: A review of progress and plans. Alzheimer’s & Dementia, 11(7), 772791. https://doi.org/10.1016/j.jalz.2015.05.003 CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. APA PsycTests. https://doi.org/10.1037/t27208-000 Google Scholar
Li, W., Risacher, S. L., McAllister, T. W., & Saykin, A. J. (2016). Traumatic brain injury and age at onset of cognitive impairment in older adults. Journal of Neurology, 263(7), 12801285. https://doi.org/10.1007/s00415-016-8093-4 CrossRefGoogle ScholarPubMed
Li, Y., Li, Y., Li, X., Zhang, S., Zhao, J., Zhu, X., & Tian, G. (2017). Head injury as a risk factor for dementia and Alzheimer’s disease: A systematic review and meta-analysis of 32 Observational studies. PLoS ONE, 12(1), e0169650. https://doi.org/10.1371/journal.pone.0169650 CrossRefGoogle ScholarPubMed
LoBue, C., Denney, D., Hynan, L. S., Rossetti, H. C., Lacritz, L. H., Hart, J., Womack, K. B., Woon, F. L., Cullum, C. M., & Abisambra, J. (2016). Self-reported traumatic brain injury and mild cognitive impairment: Increased risk and earlier age of diagnosis. Journal of Alzheimer’s Disease, 51(3), 727736. https://doi.org/10.3233/jad-150895 CrossRefGoogle ScholarPubMed
Loignon, A., Ouellet, M.-C., & Belleville, G. (2020). A systematic review and meta-analysis on PTSD following TBI among military/Veteran and civilian populations. Journal of Head Trauma Rehabilitation, 35(1), E21E35. https://doi.org/10.1097/htr.0000000000000514 CrossRefGoogle ScholarPubMed
Magruder, K. M., & Yeager, D. E. (2009). The prevalence of PTSD across war eras and the effect of deployment on PTSD: A systematic review and meta-analysis. Psychiatric Annals, 39(8), 778788. https://doi.org/10.3928/00485713-20090728-04 CrossRefGoogle Scholar
Mattson, E. K., Nelson, N. W., Sponheim, S. R., & Disner, S. G. (2019). The impact of PTSD and mTBI on the relationship between subjective and objective cognitive deficits in combat-exposed veterans. Neuropsychology, 33(7), 913921. https://doi.org/10.1037/neu0000560 CrossRefGoogle ScholarPubMed
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263269. https://doi.org/10.1016/j.jalz.2011.03.005 CrossRefGoogle ScholarPubMed
Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43(11), 24122414. https://doi.org/10.1212/wnl.43.11.2412-a CrossRefGoogle ScholarPubMed
Nathan, P. J., Lim, Y. Y., Abbott, R., Galluzzi, S., Marizzoni, M., Babiloni, C., Albani, D., Bartres-Faz, D., Didic, M., Farotti, L., Parnetti, L., Salvadori, N., Müller, B. W., Forloni, G., Girtler, N., Hensch, T., Jovicich, J., Leeuwis, A., Marra, C., Molinuevo, Jé L., Nobili, F., Pariente, J., Payoux, P., Ranjeva, J.-P., Rolandi, E., Rossini, P. M., Schönknecht, P., Soricelli, A., Tsolaki, M., Visser, P. J., Wiltfang, J., Richardson, J. C., Bordet, Régis, Blin, O., & Frisoni, G. B. (2017). Association between CSF biomarkers, hippocampal volume and cognitive function in patients with amnestic mild cognitive impairment (MCI). Neurobiology of Aging, 53, 110. https://doi.org/10.1016/j.neurobiolaging.2017.01.013 CrossRefGoogle ScholarPubMed
Olsson, B., Lautner, R., Andreasson, U., Öhrfelt, A., Portelius, E., Bjerke, M., Hölttä, M., Rosén, C., Olsson, C., Strobel, G., Wu, E., Dakin, K., Petzold, M., Blennow, K., & Zetterberg, H. (2016). CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. The Lancet Neurology, 15(7), 673684. https://doi.org/10.1016/s1474-4422(16)00070-3 CrossRefGoogle ScholarPubMed
Palmer, B. W., Boone, K. B., Lesser, I. M., & Wohl, M. A. (1998). Base rates of “Impaired” neuropsychological test performance among healthy older adults. Archives of Clinical Neuropsychology, 13(6), 503511. https://doi.org/10.1093/arclin/13.6.503 Google ScholarPubMed
Pelgrim, T. A. D., Beran, M., Twait, E. L., Geerlings, M. I., & Vonk, J. M. J. (2021). Cross-sectional associations of tau protein biomarkers with semantic and episodic memory in older adults without dementia: A systematic review and meta-analysis. Ageing Research Reviews, 71, 101449. https://doi.org/10.1016/j.arr.2021.101449 CrossRefGoogle ScholarPubMed
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194. https://doi.org/10.1111/j.1365-2796.2004.01388.x CrossRefGoogle ScholarPubMed
Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R. Jr, Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s disease neuroimaging initiative (ADNI) clinical characterization. Neurology, 74(3), 201209. https://doi.org/10.1212/wnl.0b013e3181cb3e25 CrossRefGoogle Scholar
Petersen, R. C., Lopez, O., Armstrong, M. J., Getchius, T. S. D., Ganguli, M., Gloss, D., Gronseth, G. S., Marson, D., Pringsheim, T., Day, G. S., Sager, M., Stevens, J., & Rae-Grant, A. (2018). Practice guideline update summary. Neurology, 90(3), 126135. https://doi.org/10.1212/wnl.0000000000004826 CrossRefGoogle ScholarPubMed
Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62(7), 11601163. https://doi.org/10.1001/archneur.62.7.1160 CrossRefGoogle ScholarPubMed
Pettigrew, C., Soldan, A., Moghekar, A., Wang, M.-C., Gross, A. L., O’Brien, R., & Albert, M. (2015). Relationship between cerebrospinal fluid biomarkers of Alzheimer’s disease and cognition in cognitively normal older adults. Neuropsychologia, 78, 6372. https://doi.org/10.1016/j.neuropsychologia.2015.09.024 CrossRefGoogle ScholarPubMed
Pommy, J., Conant, L., Butts, A. M., Nencka, A., Wang, Y., Franczak, M., & Glass-Umfleet, L. (2023). A graph theoretic approach to neurodegeneration: five data-driven neuropsychological subtypes in mild cognitive impairment. In Aging, neuropsychology, and cognition (pp. 120). https://doi.org/10.1080/13825585.2022.2163973 Google Scholar
Reijs, B. L. R., Ramakers, I. H. G. B., Köhler, S., Teunissen, C. E., Koel-Simmelink, M., Nathan, P. J., Tsolaki, M., Wahlund, L.-O., Waldemar, G., Hausner, L., Vandenberghe, R., Johannsen, P., Blackwell, A., Vanderstichele, H., Verhey, F., & Visser, P. J. (2017). Memory correlates of Alzheimer’s disease cerebrospinal fluid markers: A longitudinal cohort study. Journal of Alzheimer’s Disease, 60(3), 11191128. https://doi.org/10.3233/jad-160766 CrossRefGoogle ScholarPubMed
Reitan, R. M. (1956). Trail making test. Manual for administration, scoring, and interpretation: University Press.Google Scholar
Schmidt, M. (1996). Rey auditory verbal learning test: Western Psychological Services.Google Scholar
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., Krystal, J. H., & Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105140. https://doi.org/10.1037/a0038039 CrossRefGoogle ScholarPubMed
Shaw, L. M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., Blennow, K., Soares, H., Simon, A., Lewczuk, P., Dean, R., Siemers, E., Potter, W., Lee, V. M.‐Y., Trojanowski, J. Q., & Alzheimer’s Disease Neuroimaging Initiative (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403413. https://doi.org/10.1002/ana.21610 CrossRefGoogle ScholarPubMed
Snowden, T. M., Hinde, A. K., Reid, H. M. O., & Christie, B. R. (2020). Does mild traumatic brain injury increase the risk for dementia? A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 78(2), 757775. https://doi.org/10.3233/jad-200662 Google ScholarPubMed
Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R. Jr., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison‐Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280292. https://doi.org/10.1016/j.jalz.2011.03.003 CrossRefGoogle ScholarPubMed
Stricker, N. H., Christianson, T. J., Lundt, E. S., Alden, E. C., Machulda, M. M., Fields, J. A., Kremers, W. K., Jack, C. R. Jr, Knopman, D. S., Mielke, M. M., & Petersen, R. C. (2021). Mayo normative studies: Regression-based normative data for the auditory verbal learning test for ages 30-91 years and the importance of adjusting for sex. Journal of the International Neuropsychological Society, 27(3), 211226. https://doi.org/10.1017/s1355617720000752 CrossRefGoogle ScholarPubMed
VA/DoD Management and Rehabilitation of Post-Acute Mild Traumatic Brain Injury Work Group. (2021). VA/DoD clinical practice guideline for the management and rehabilitation of post-acute mild traumatic brain injury. https://www.healthquality.va.gov/guidelines/Rehab/mtbi/VADoDmTBICPGFinal508.pdf Google Scholar
Veitch, D. P., Weiner, M. W., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Alzheimer’s Disease Neuroimaging Initiative (2019). Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s disease neuroimaging initiative. Alzheimer’s & Dementia, 15(1), 106152. https://doi.org/10.1016/j.jalz.2018.08.005 CrossRefGoogle ScholarPubMed
Veitch, D. P., Weiner, M. W., Aisen, P. S., Beckett, L. A., DeCarli, C., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Landau, S. M., Morris, J. C., Okonkwo, O., Perrin, R. J., Petersen, R. C., Rivera‐Mindt, M., Saykin, A. J., Shaw, L. M., Toga, A. W., Tosun, D., Trojanowski, J. Q., & Alzheimer’s Disease Neuroimaging Initiative (2022). Using the Alzheimer’s disease neuroimaging initiative to improve early detection, diagnosis, and treatment of Alzheimer’s disease. Alzheimer’s & Dementia, 18(4), 824857. https://doi.org/10.1002/alz.12422 CrossRefGoogle Scholar
Weiner, M. W., Aisen, P. S., Petersen, R. C. (2020) Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3) Protocol Version 3.1. https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/consentForms/ADNI3_ProtocolVersion3.1_20201204.pdf Google Scholar
Weiner, M. W., Harvey, D., Hayes, J., Landau, S. M., Aisen, P. S., Petersen, R. C., Tosun, D., Veitch, D. P., Jack, C. R., Decarli, C., Saykin, A. J., Grafman, J., Neylan, T. C., & Department of Defense Alzheimer’s Disease Neuroimaging Initiative (2017). Effects of traumatic brain injury and posttraumatic stress disorder on development of Alzheimer’s disease in Vietnam veterans using the Alzheimer’s disease neuroimaging initiative: Preliminary report. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(2), 177188. https://doi.org/10.1016/j.trci.2017.02.005 Google Scholar
Weiner, M. W., Harvey, D., Landau, S. M., Veitch, D. P., Neylan, T. C., Grafman, J. H., Aisen, P. S., Petersen, R. C., Jack, C. R. Jr, Tosun, D., Shaw, L. M., Trojanowski, J. Q., Saykin, A. J., Hayes, J., De Carli, C., & for the Alzheimer’s Disease Neuroimaging Initiative and the Department of Defense Alzheimer’s Disease Neuroimaging Initiative (2023). Traumatic brain injury and post-traumatic stress disorder are not associated with Alzheimer’s disease pathology measured with biomarkers. Alzheimer’s & Dementia, 19(3), 884895. https://doi.org/10.1002/alz.12712 CrossRefGoogle Scholar
Weiner, M. W., Veitch, D. P., Hayes, J., Neylan, T., Grafman, J., Aisen, P. S., Petersen, R. C., Jack, C., Jagust, W., Trojanowski, J. Q., Shaw, L. M., Saykin, A. J., Green, R. C., Harvey, D., Toga, A. W., Friedl, K. E., Pacifico, A., Sheline, Y., Yaffe, K., Mohlenoff, B., & Department of Defense Alzheimer’s Disease Neuroimaging Initiative (2014). Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer’s disease in veterans, using the Alzheimer’s disease neuroimaging initiative. Alzheimer’s & Dementia, 10(3), S226S235. https://doi.org/10.1016/j.jalz.2014.04.005 Google ScholarPubMed
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s disease centers’ uniform data set (UDS). Alzheimer Disease & Associated Disorders, 23(2), 91101. https://doi.org/10.1097/wad.0b013e318191c7dd CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L‐O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., De Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., Van Duijn, C., Visser, P., & Petersen, R. C. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: Report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256(3), 240246. https://doi.org/10.1111/j.1365-2796.2004.01380.x CrossRefGoogle Scholar