In an earlier paper we showed that the set ψ+ (X, Y) of super Tauberian transformations between two Banach spaces X and Y forms an open subset of B(X, Y) which is closed under perturbation by super weakly compact transformations. In this note we characterize a class dual to ψ+ (X, Y) which we denote by ψ-(X, Y). We show that T∈ψ+(X, Y) if and only if T′ ∈ ψ-(Y′, X′) and that T′∈ψ+(Y′, X′) if and only if T ∈ ψ-(X, Y) and provide standard and nonstandard characterizations of elements of ψ-(X, Y). These two classes thus play in some ways analogous roles to the sets of semi-Fredholm transforms ϕ+ (X, Y) and ϕ-(X, Y).
Moreover en forms an open subset of B(X, Y) closed under the taking of adjoints, under the taking of nonstandard hull extensions, and under perturbation by super weakly compact transformations.