CALCULUS IN f-ALGEBRAS

F. BEUKERS AND C. B. HUIJSMANS

(Received 24 February 1983)
Communicated by R. O. Vyborny

Abstract

Let A be an Archimedean, uniformly complete, semiprime f-algebra and $F\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathbf{R}^{+}\left[X_{1}, \ldots, X_{n}\right]$ a homogeneous polynomial of degree $p(p \in \mathbf{N})$. It is shown that $\left(F\left(u_{1}, \ldots, u_{n}\right)\right)^{1 / p}$ exists in A^{+}for all $u_{1}, \ldots, u_{n} \in A^{+}$.

1980 Mathematics subject classification (Amer. Math. Soc.): 06 F 25, 46 A 40.

In an Archimedean, uniformly complete f-algebra A with unit element every positive element u has a (unique) square root $w=\sqrt{u}$ (that is, $w \in A^{+}$and $w^{2}=u$) (see, for example [1], Theorem 4.2). This property ceases to hold if the assumption of the unit element is dropped. However, if we assume instead the weaker condition that A is semiprime, then $\sqrt{u v}$ exists in A^{+}for all $u, v \in A^{+}$ ([1], Theorem 4.2).

The main purpose of the present note is to generalize the latter theorem. In fact it will be shown that in any Archimedean, uniformly complete, semiprime f-algebra A for all $p=1,2, \ldots$ the p th root of a homogeneous polynomial of degree p, in the variables $u_{1}, \ldots, u_{n} \in A^{+}$with positive coefficients exists in A^{+}.

We start with some preliminaries on Riesz spaces and f-algebras in Section 1 and we shall prove the main theorem in Section 2. For terminology and unproved properties of Riesz spaces and f-algebras we refer the reader to [3] and [2].

1. Some preliminaries

Let L be a Riesz space (vector lattice) with positive cone L^{+}. We assume throughout this note that all Riesz spaces (and hence all f-algebras) under

[^0]consideration are Archimedean. Given the element $v \in L^{+}$, the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in L is said to converge v-uniformly to $f \in L$ whenever, for every $\varepsilon>0$, there exists a natural number N_{ε} such that $\left|f-f_{n}\right| \leqslant \varepsilon v$ for all $n \geqslant N_{\varepsilon}$. This will be denoted by $f_{n} \rightarrow f(v)$ or by $f_{n} \rightarrow f(r . u$.) if we do not want to specify the element v. In like manner the notion of uniform Cauchy sequence is defined. Uniform limits are unique if and only if L is Archimedean. The Archimedean Riesz space L is called uniformly complete whenever every uniform Cauchy sequence in L has a (unique) limit.

The Riesz space A is said to be a Riesz algebra (lattice ordered algebra) if there exists a multiplication in A with the usual algebra properties such that $u v \in A^{+}$ for all $u, v \in A^{+}$. Note that $0 \leqslant u \leqslant v$ in A implies that $u^{p} \leqslant v^{p}(p=1,2, \ldots)$. The Riesz algebra A is called an f-algebra if A has the additional property that $u \wedge v=0$ implies

$$
(u w) \wedge v=(w u) \wedge v=0
$$

for all $w \in A^{+}$. As agreed upon, every f-algebra A we consider is Archimedean. Hence, A is automatically associative and commutative. If A has, in addition, a unit element, then A is semiprime (that is, the only nilpotent in A is zero). We mention another two properties of f-algebras which we shall use later on.

1) $u v=(u \vee v)(u \wedge v)$ for all $u, v \in A^{+}$;
2) $u(v \vee w)=(u v) \vee(u w)$

$$
u(v \wedge w)=(u v) \wedge(u w) \quad \text { for all } u, v, w \in A^{+}
$$

Let A be an Archimedean semiprime f-algebra in the rest of this section. The element $u \in A^{+}$is called a p th root $(p=1,2, \ldots)$ of the element $w \in A^{+}$ whenever $u^{p}=w$. We first show that such an element u, if existing, is necessarily unique. Once this is accomplished, the notation $u=\sqrt[p]{w}=w^{1 / p}$ is justified.

Proposition 1. If $u, v \in A^{+}$, then

$$
(u \wedge v)^{p}=u^{p} \wedge v^{p} \quad \text { and } \quad(u \vee v)^{p}=u^{p} \vee v^{p}
$$

Proof. We show the validity of the infimum formula, the proof of the supremum formula being very similar. The method of proof is by induction on p. The case $p=1$ being clear, suppose that $(u \wedge v)^{q}=u^{q} \wedge v^{q}$ for all $q \leqslant p$. From $u v=(u \vee v)(u \wedge v)$ it follows that

$$
\begin{aligned}
\left(u v^{p}\right) \wedge\left(u^{p} v\right) & =u v\left(u^{p-1} \wedge v^{p-1}\right)=(u \vee v)(u \wedge v)(u \wedge v)^{p-1} \\
& =(u \vee v)(u \wedge v)^{p}=(u \vee v)\left(u^{p} \wedge v^{p}\right) \\
& =\left(u^{p+1} \vee u^{p} v\right) \wedge\left(u v^{p} \vee v^{p+1}\right) \geqslant u^{p+1} \wedge v^{p+1}
\end{aligned}
$$

Hence, $(u \wedge v)^{p+1}=(u \wedge v)^{p}(u \wedge v)=\left(u^{p} \wedge v^{p}\right)(u \wedge v)=u^{p+1} \wedge u^{p} v \wedge u v^{p}$ $\wedge v^{p+1}=u^{p+1} \wedge v^{p+1}$, which finishes the induction step.

Proposition 2. (i) $|u-v| \leqslant\left|u^{p}-v^{p}\right|$ for all $u, v \in A^{+}$.
(ii) If $u, v \in A^{+}$, then $u^{p}=v^{p}$ if and only if $u=v$.
(iii) If $u, v \in A^{+}$, then $u^{p} \leqslant v^{p}$ if and only if $u \leqslant v$.

Proof. (i) Suppose first that $0 \leqslant v \leqslant u$ and put $w=u-v$. In this case $|u-v|^{p}=w^{p} \leqslant(w+v)^{p}-v^{p}=\left|u^{p}-v^{p}\right|$. The general case is reduced to this particular one. Indeed, if $u, v \in A^{+}$are arbitrary, then

$$
\begin{aligned}
|u-v|^{p} & =(u \vee v-u \wedge v)^{p} \leqslant(u \vee v)^{p}-(u \wedge v)^{p} \\
& =u^{p} \vee v^{p}-u^{p} \wedge v^{p}=\left|u^{p}-v^{p}\right|
\end{aligned}
$$

where we use Proposition 1 and the identity $|f-g|=f \vee g-f \wedge g$ for all $f, g \in A$.
(ii) By (i), $u^{p}=v^{p}$ implies $|u-v|^{p}=0$. Since A is semiprime, this yields $|u-v|=0$, that is, $u=v$.
(iii) If $u^{p} \leqslant v^{p}$, then $u^{p}=u^{p} \wedge v^{p}=(u \wedge v)^{p}$. By $(i), u=u \wedge v$, that is, $u \leqslant v$. The converse is evident.

Obviously, the second part of the above proposition results in uniqueness of p th roots. For later purposes, we state and prove a corollary.

Corollary 3. (a) If $u_{n} \in A^{+}(n=1,2, \ldots), w \in A^{+}$and $\left\{u_{n}^{p}\right\}_{n=1}^{\infty}$ is a w^{p}-uniform Cauchy sequence, then $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a w-uniform Cauchy sequence.
(b) If $u_{n}^{p} \rightarrow v^{p}\left(w^{p}\right)$, then $u_{n} \rightarrow v(w)$.

Proof. (a) Given $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbf{N}$ such that $\left|u_{n}^{p}-u_{m}^{p}\right| \leqslant \varepsilon^{p} w^{p}$ for all $n, m \geqslant N_{\varepsilon}$. By Proposition 2(i), this implies that $\left|u_{n}-u_{m}\right|^{p} \leqslant \varepsilon^{p} w^{p}$ for all $n, m \geqslant$ N_{ε}. Using Proposition 2(ii) we derive $\left|u_{n}-u_{m}\right| \leqslant \varepsilon w$ for all $n, m \geqslant N_{\varepsilon}$.
(b) Similarly.

2. The main theorem

In the remainder of this paper \boldsymbol{A} denotes an Archimedean, uniformly complete semiprime f-algebra. As stated before, $\sqrt{u v}$ exists in A^{+}for all $u, v \in A^{+}$. Since

$$
u^{2}+v^{2}=(u+v+\sqrt{2 u v})(u+v-\sqrt{2 u v})
$$

is a positive product, it follows immediately that $\sqrt{u^{2}+v^{2}}$ exists in A^{+}as well. Actually, the following extension is immediate: if $u, v \in A^{+} ; \alpha, \beta, \gamma \in \mathbf{R}$ such that $\alpha \geqslant 0, \gamma \geqslant 0$ and $\beta^{2} \leqslant \alpha \gamma$, the square root of the positive definite homogeneous polynomial $\alpha u^{2}+2 \beta u v+\gamma v^{2}$ exists in A^{+}. We shall generalize this result to homogeneous polynomials of degree p in n variables. As a first step in this direction we prove

Theorem 4. If $u, v \in A^{+}$and $u \leqslant v$, then $\sqrt[p]{u^{p-1} v}$ exists in A^{+}.
Proof. We recall that by [1], Proposition 4.1,

$$
\inf _{\substack{\alpha=k / n \\ k=1, \ldots, n}} \frac{1}{\alpha}(u-\alpha v)^{2} \leqslant n \cdot \frac{1}{n^{2}} v^{2}=\frac{1}{n} v^{2} \quad(n=1,2, \ldots) .
$$

The following sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ will turn out to be the natural approximating Cauchy sequence for $\sqrt[p]{u^{p-1} v}$:

$$
w_{n}=\inf _{\substack{\alpha=k / n \\ k=1, \ldots, n}}\left\{\frac{\alpha^{-1 / p}}{p}((p-1) u+\alpha v)\right\} \quad(n=1,2, \ldots) .
$$

The construction of the elements w_{n} is motivated by the fact that for all $u \in \mathbf{R}^{+}$ we have

$$
\sqrt[p]{u^{p-1}}=\inf \left\{\frac{\alpha^{-1 / p}}{p}((p-1) u+\alpha): \alpha \in \mathbf{Q}^{+}\right\}
$$

(note that the expression between brackets represents the tangent of $\sqrt[p]{x^{p-1}}$ at the point $x=\alpha$).

We claim that

$$
0 \leqslant w_{n}^{p}-u^{p-1} v \leqslant \frac{C}{n} v^{p} \quad(n=1,2, \ldots)
$$

for some constant $C>0$. Indeed, by Proposition 1,

$$
w_{n}^{p}-u^{p-1} v=\frac{1}{p^{p}} \inf _{\substack{\alpha=k / n \\ k=1, \ldots, n}} \frac{1}{\alpha}\left\{[(p-1) u+\alpha v]^{p}-p^{p} u^{p-1} \alpha v\right\} .
$$

Put $F(u, \alpha v)=[(p-1) u+\alpha v]^{p}-p^{p} u^{p-1} \alpha v$, which is a homogeneous polynomial of degree p in u and αv. Consider the corresponding inhomogeneous polynomial

$$
F(X)=\{(p-1) X+1\}^{p}-p^{p} X^{p-1} \in \mathbf{R}[X] .
$$

Since $F(1)=F^{\prime}(1)=0$, we have $F(X)=(1-X)^{2} G(X)$ for some $G(X) \in \mathbf{R}[X]$ of degree $p-2$. We assert that $G(X) \in \mathbf{R}^{+}[X]$, which will be deduced using formal power series. Indeed,

$$
\begin{aligned}
G(X) & =(1-X)^{-2} F(X) \\
& =\left(1+2 X+3 X^{2}+\cdots\right)\left(1+\alpha_{1} X+\cdots+\alpha_{p-1} X^{p-1}+\alpha_{p} X^{p}\right)
\end{aligned}
$$

with $\alpha_{i} \geqslant 0(i=1,2, \ldots, p-2)$. We do not compute the coefficients explicitly, since it is not relevant for the argument. In this formal product the constant is 1 and the coefficients of $X, X^{2}, \ldots, X^{p^{-2}}$ are non-negative. However, the degree of $G(X)$ is $p-2$, and so all coefficients of $G(X)$ are nonnegative, that is, $G(X) \in$ $\mathbf{R}^{+}[X]$. Resuming the above, we find

$$
F(u, \alpha v)=(u-\alpha v)^{2} G(u, \alpha v) \geqslant 0,
$$

in other words, $w_{n}^{p}-u^{p-1} v \geqslant 0(n=1,2, \ldots)$. Moreover, it follows from

$$
G(u, \alpha v)=\beta_{0} u^{p-2}+\beta_{1} u^{p-3}(\alpha v)+\cdots+\beta_{p-2}(\alpha v)^{p-2}
$$

$\left(\beta_{i} \geqslant 0, i=0,1, \ldots, p-2\right), 0<\alpha \leqslant 1$ and $0 \leqslant u \leqslant v$ that $G(u, \alpha v) \leqslant C^{\prime} v^{p-2}$, with $C^{\prime}>0$ a constant not depending on α. Therefore,

$$
0 \leqslant w_{n}^{p}-u^{p-1} v \leqslant C \inf _{\substack{\alpha=k / n \\ k=1, \ldots, n}} \frac{1}{\alpha}(u-\alpha v)^{2} \cdot v^{p-2}
$$

(with $C=C^{\prime} / p^{p}$). Hence, by the observation at the beginning of the proof,

$$
0 \leqslant w_{n}^{p}-u^{p-1} v \leqslant C \frac{1}{n} v^{2} \cdot v^{p-2}=\frac{C}{n} v^{p} \quad(n=1,2, \ldots) .
$$

Therefore,

$$
\left|w_{n}^{p}-w_{m}^{p}\right| \leqslant \frac{C}{n} v^{p} \quad \text { for all } m \geqslant n(n=1,2, \ldots) .
$$

By Corollary 3, the sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ is a v-uniform Cauchy sequence in A^{+}, so $w_{n} \rightarrow w$ (r.u.) for some $w \in A^{+}$. This implies that $w_{n}^{p} \rightarrow w^{p}$ (r.u.). On the other hand, $w_{n}^{p} \rightarrow u^{p-1} v$ (r.u.). Uniqueness of uniform limits yields $w^{p}=u^{p-1} v$, that is, $w=\sqrt[p]{u^{p-1} v}$. The proof is complete.

Theorem 5. Let A be an Archimedean, uniformly complete, semiprime f-algebra and let $F\left(X_{1}, \ldots, X_{n}\right) \in \mathbf{R}^{+}\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree p $(p \in \mathbf{N})$. Then $\left(F\left(u_{1}, \ldots, u_{n}\right)\right)^{1 / p}$ exists in A^{+}for all $u_{1}, \ldots, u_{n} \in A^{+}$.

Proof. The proof is divided in several steps and is reduced ultimately to the result of Theorem 4.

Step 1. Using the result of Theorem 4, we show by induction on p that $\left(u_{1} \cdots u_{p}\right)^{1 / p}$ exist in A^{+}whenever $0 \leqslant u_{1} \leqslant \cdots \leqslant u_{p}$. Indeed, the case $p=1$ (and also $p=2$) being clear, it follows from the induction hypothesis that $u_{1} \cdots u_{p-1} u_{p}=v^{p-1} u_{p}$ (with $v=\left(u_{1} \cdots u_{p-1}\right)^{1 / p-1}$). Since $v^{p-1} \leqslant u_{p-1}^{p-1} \leqslant$ u_{p}^{p-1}, Proposition 2(iii) implies $v \leqslant u_{p}$. By Theorem 4, $\left(v^{p-1} u_{p}\right)^{1 / p}=$ $\left(u_{1} \cdots u_{p}\right)^{1 / p}$ exists in A^{+}.

Step 2. The p th root $\left(u^{p^{-1}} v\right)^{1 / p}$ exists in A^{+}for all $u, v \in A^{+}$. This observation follows immediately from

$$
u v=(u \wedge v)(u \vee v) \text { and } u^{p-1} v=(u \wedge v) u^{p-2}(u \vee v) \quad(p \geqslant 3)
$$

and step 1 .
Step 3. The p th root of $u_{1} \cdots u_{p}$ exists in A^{+}for all $u_{1}, \ldots, u_{p} \in A^{+}$. Use step 2 and induction on p, just as in step 1 .

Step 4. The p th root of $u^{\rho}+u_{2}^{\mathcal{R}}$ exists in A^{+}for all $u_{1}, u_{2} \in A^{+}$. Indeed,

$$
u P+u_{2}^{P}=Q_{1}\left(u_{1}, u_{2}\right) \cdots Q_{p / 2}\left(u_{1}, u_{2}\right) \quad(p \text { even })
$$

or

$$
u_{1}^{P}+u_{2}^{P}=\left(u_{1}+u_{2}\right) Q_{1}\left(u_{1}, u_{2}\right) \cdots Q_{\frac{1}{2}(p-1)}\left(u_{1}, u_{2}\right) \quad(p \text { odd }),
$$

where $Q_{i}\left(u_{1}, u_{2}\right)$ is a positive definite quadratic homogeneous polynomial in u_{1} and u_{2}. By the remarks preceding Theorem 4, the square root of such $Q_{i}\left(u_{1}, u_{2}\right)$ exists in A^{+}. Therefore we have in either case that $u_{p}^{p}+u_{2}^{p}=w_{1} w_{2} \cdots w_{p}$ for appropriate $w_{i} \in A^{+}(i=1, \ldots, p)$. By step 3 , the p th root of $u_{\rho}^{p}+u_{2}^{p}$ exists in A^{+}.

Step 5. The p th root of $u^{p}+\cdots+u_{n}^{p}$ exists in A^{+}for all $u_{1}, \ldots, u_{n} \in A^{+}$. Immediate by induction on n.
Step 6. The p th root of $F\left(u_{1}, \ldots, u_{n}\right)$ exist in A^{+}. This follows from a combination of step 3 and step 5 .

Corollary 6. In an Archimedean, uniformly complete f-algebra A with unit element, $\sqrt[p]{u}$ exists for all $u \in A^{+}$and all $p \in \mathbf{N}$.

It should be noted that, independently and simultaneously, B. de Pagter has studied similar problems in a somewhat more general setting.
The authors are grateful to the referee for his valuable suggestions.

References

[1] F. Beukers, C. B. Huijsmans and B. de Pagter, 'Unital embedding and complexification of f-algebras,' Math. Z. 183 (1983), 131-144.
[2] C. B. Huijsmans and B. de Pagter, 'Ideal theory in f-algebras,' Trans. Amer. Math. Soc. 269 (1982), 225-245.
[3] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. I, (North-Holland Publ. Co., AmsterdamLondon, 1971).

Mathematisch Instituut
Rijksuniversiteit Leiden
Wassenaarseweg 80
2333 AL Leiden
The Netherlands

[^0]: © 1984 Australian Mathematical Society 0263-6115/84 $\$ \mathbf{A} 2.00+0.00$

