GENERALIZED FREDHOLM TRANSFORMATIONS

D. G. TACON

(Received 29 November 1982)

Abstract

In an earlier paper we showed that the set $\psi_{+}(X, Y)$ of super Tauberian transformations between two Banach spaces X and Y forms an open subset of $\mathscr{G}(X, Y)$ which is closed under perturbation by super weakly compact transformations. In this note we characterize a class dual to $\psi_{+}(X, Y)$ which we denote by $\psi_{-}(X, Y)$. We show that $$
T \in \psi_{+}(X, Y) \text { if and only if } T^{\prime} \in \psi_{-}\left(Y^{\prime}, X^{\prime}\right)
$$ and that $$
T^{\prime} \in \psi_{+}\left(Y^{\prime}, X^{\prime}\right) \text { if and only if } T \in \psi_{-}(X, Y)
$$ and provide standard and nonstandard characterizations of elements of $\psi_{-}(X, Y)$. These two classes thus play in some ways analogous roles to the sets of semi-Fredholm transforms $\phi_{+}(X, Y)$ and $\phi_{-}(X, Y)$.

Moreover $\psi(X, Y)=\psi_{+}(X, Y) \cap \psi_{-}(X, Y)$ then forms an open subset of $\mathscr{B}(X, Y)$ closed under the taking of adjoints, under the taking of nonstandard hull extensions, and under perturbation by super weakly compact transformations.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 53.

1. Preliminaries

This paper is a continuation of the investigation begun in an earlier paper [8]. We are concerned with transformations between (real infinite dimensional) Banach spaces and with their extensions on the nonstandard hulls of these spaces. Our notation is generally consistent with [8] except for a limited number of instances which we comment on explicitly. As before we are assuming that our objects of study are embedded in some set theoretical structure \mathfrak{N} of which $* \mathfrak{K}$ is an κ_{1}-saturated enlargement. For a Banach space X the nonstandard hull \hat{X} (with

[^0]respect to * ${ }^{*}$ () is constructed by factoring the infinitesimal elements of ${ }^{*} X$ from the finite elements of ${ }^{*} X$. The original space X is embedded in \hat{X} and \hat{X} is a Banach space under the norm $\|\hat{p}\|=$ standard part ${ }^{*}\|p\|$ where \hat{p} denotes the equivalence class determined by the finite element $p \in{ }^{*} X$. An element $S \in$ finite $* \mathscr{B}(X, Y)$ defines an element $\hat{S} \in \mathscr{B}(\hat{X}, \hat{Y})$ by the equation $\hat{S}(\hat{p})=(S(p))$ where $p \in$ finite ${ }^{*} X$.

We remind the reader that the class of Tauberian transformations $\mathscr{T}(X, X)$ consists of those transformations T between X and Y for which $T^{\prime \prime} x^{\prime \prime} \in Y$ implies $x^{\prime \prime} \in X$. The class of super Tauberian transformations, which we now denote by $\psi_{+}(X, Y)$, consists of those transformations which have Tauberian extensions between the nonstandard hulls, that is, $T \in \psi_{+}(X, Y)$ if $\hat{T} \in \mathscr{T}(\hat{X}, \hat{Y})$. Theorem 3 in [8] provides alternate characterizations of $\psi_{+}(X, Y)$ the simplest of which is the condition that ker \hat{T} is reflexive or superreflexive. It seems to be an open question whether or not $T \in \mathscr{F}(X, Y)$ implies $T^{\prime \prime} \in \mathscr{T}\left(X^{\prime \prime}, Y^{\prime \prime}\right)$ (see Kalton and Wilansky [7] and [8, Proposition]). The principal difficulty in establishing a result like this arises since a Tauberian transformation T need not have closed range. Thus one cannot assume that the range of the adjoint is the set of $f \in X^{\prime}$ for which $T x=0$ implies $f(x)=0$, that is, we cannot assume $\mathscr{R}\left(T^{\prime}\right)=(\text { ker } T)^{\perp}$ (see Dunford and Schwartz [2, page 487]).

Without the conclusion that $T^{\prime \prime} \in \mathscr{T}\left(X^{\prime \prime}, Y^{\prime \prime}\right)$ it is impossible to define a class of transformations which is completely dual to $\mathscr{T}(X, Y)$. Yang [10] counters this problem by calling a transformation T co-Tauberian if T has closed range and reflexive cokernel. Then, for transformations with closed range, Tauberian and co-Tauberian transformations are completely dual. It is not true that a super Tauberian transformation T need have closed range (see Section 4) but nevertheless if T is super Tauberian then $T^{\prime \prime}$ is super Tauberian.

2. The existence of $\psi_{-}(X, Y)$

We show in this section that there exists a class of transformations satisfying the duality properties stated in the abstract.

Lemma 1. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. Let $S=$ $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a finite subset of X^{\prime} and suppose $\phi \in X^{\prime \prime}$ is such that $\left\|T^{\prime \prime} \phi\right\|<\varepsilon$ where $\varepsilon>0$. Then, given $\delta>0$, there exists a point $x \in X$ such that
(i) $\|x\| \leqslant 3\|\phi\|+\delta$;
(ii) $f_{i}(x)=\phi\left(f_{i}\right)$ for $i=1,2, \ldots, n$; and
(iii) $\|T x\|<\varepsilon$.

Proof. By Helly's theorem (Wilansky [9, page 103]) there exists a point $x_{0} \in X$ with $\left\|x_{0}\right\| \leqslant\|\phi\|+\delta / 2$ such that $\left(f_{i}\right)\left(x_{0}\right)=\phi\left(f_{i}\right)$ for $i=1,2, \ldots, n$. Let $S_{\perp}=\left\{x \in X: f_{i}(x)=0\right.$ for $\left.i=1,2, \ldots, n\right\}$ and $S^{\perp}=\left\{x^{\prime \prime} \in X^{\prime \prime}: x^{\prime \prime}\left(f_{i}\right)=0\right.$ for $i=1,2, \ldots, n\}$. Then $\phi \in x_{0}+S^{\perp}$ and so we can write $\phi=x_{0}+x^{\prime \prime}$ where $x^{\prime \prime} \in S^{\perp}$ and $\left\|x^{\prime \prime}\right\| \leqslant 2\|\phi\|+\delta / 2$. Suppose $A=\left\{x \in S_{\perp}:\|x\| \leqslant 2\|\phi\|+\delta / 2\right\}$ and $B=T\left(x_{0}\right)+T(A)$. Then there exists a net of points $\left\{x_{\alpha}\right\} \subset A$ such that $x_{\alpha} \rightarrow x^{\prime \prime}$ in the weak* topology. Consequently $T x_{\alpha} \rightarrow T^{\prime \prime} x^{\prime \prime}$ in the weak* topology or equivalently $T x_{0}+T x_{\alpha} \rightarrow T^{\prime \prime} \phi$ in the weak* topology. But $\left\|T^{\prime \prime} \phi\right\|<\varepsilon$ so for all $g \in Y^{\prime \prime}$ with $\|g\| \leqslant 1$ there exists a point $b \in B$ such that $|g(b)|<\varepsilon$. Now let us suppose that $d(0, B) \geqslant \varepsilon$, so that $Y_{\varepsilon} \cap B=\varnothing$. Then B and Y_{ε} can be separated by a non-zero continuous linear functional (Dunford and Schwartz [2, page 417]). This means there exists an element $g \in Y^{\prime}$ with $\|g\|=1$ and a real constant d such that

$$
g(B) \geqslant d \quad \text { and } \quad g\left(Y_{\varepsilon}\right) \leqslant d .
$$

But $\sup g\left(Y_{\varepsilon}\right)=\varepsilon$ and so $d \geqslant \varepsilon$ forcing the inequality $g(B) \geqslant \varepsilon$. This is a contradiction and so $d(0, B)<\varepsilon$. Thus there is a point $x_{1} \in A$ such that $\left\|T\left(x_{0}+x_{1}\right)\right\|$ $<\varepsilon$ and $x=x_{0}+x_{1}$ then satisfies the three conditions of the lemma.

Theorem 1. Let X and Y be Banach spaces and suppose $T \in \psi_{+}(X, Y)$. Then $T^{\prime \prime} \in \psi_{+}\left(X^{\prime \prime}, Y^{\prime \prime}\right)$.

Proof. Suppose $T^{\prime \prime} \notin \psi_{+}\left(X^{\prime \prime}, Y^{\prime \prime}\right)$. Then, by [8, Theorem 3], there exists a real number r satisfying $0<r<1$ such that for all positive integers n there exist finite sequences of elements $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ in $X^{\prime \prime}$ and $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ in $X^{\prime \prime}$ such that $\left\|\phi_{k}\right\|,\left\|F_{k}\right\|<1$ for $k=1,2, \ldots, n$ satisfying

$$
\begin{array}{ll}
F_{j}\left(\phi_{i}\right)>r & \text { for } 1 \leqslant j \leqslant i \leqslant n \text { and } \\
F_{j}\left(x_{i}\right)=0 & \text { for } 1 \leqslant i<j \leqslant n .
\end{array}
$$

with $\left\|x_{k}\right\|<3$ and $\left\|T x_{k}\right\|<1 / k$ for $k=1,2, \ldots, n$. It follows by [8, Theorem 3] that $T \notin \psi_{+}(X, Y)$.
We now define $\psi_{-}(X, Y)$ to consist of those transformations $T \in \mathscr{B}(X, Y)$ for which $T^{\prime} \in \psi_{+}\left(Y^{\prime}, X^{\prime}\right)$. Since $\psi_{+}\left(Y^{\prime}, X^{\prime}\right)$ is open it follows that $\psi_{-}(X, Y)$ is an open subset of $\mathscr{B}(X, Y)$. Further, since the converse of Theorem 1 is also true, we have

$$
T \in \psi_{+}(X, Y) \quad \text { if and only if } \quad T^{\prime} \in \psi_{-}\left(Y^{\prime}, X^{\prime}\right)
$$

3. Characterizations of the set $\psi_{-}(X, Y)$

If $T \in \mathscr{B}(X, Y)$ we let $\bar{\Re}(T)$ denote the closure of the range of T, and we then call the quotient space $Y / \bar{R}(T)$ the cokernel of T. We shall show that $T \in$ $\psi_{-}(X, Y)$ if and only if \hat{T} has reflexive cokernel, or equivalently, a superreflexive cokernel. The proof of this result would be immediate except that, in general, $(\hat{T})^{\prime} \neq\left(T^{\prime}\right)^{\text {; }}$, recall $(\hat{X})^{\prime}=\left(X^{\prime}\right)^{\text {if }}$ if and only if X is superreflexive (see Henson and Moore [3, Theorem 8.5]).

Lemma 2. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. If $\operatorname{ker}\left(T^{\prime}\right) \hat{i}$ is reflexive (respectively, superreflexive) then \hat{T} has reflexive cokernel (respectively, superreflexive cokernel).

Proof. Let W and Z denote $\operatorname{ker}\left(T^{\prime}\right)^{\wedge}$ and $\hat{Y} / \overline{\mathscr{R}}(\hat{T})$ respectively. We can consider $\left(X^{\prime}\right)^{\wedge}$ to be embedded in $(\hat{X})^{\prime}$ in which case $\left(T^{\prime}\right)$ is the restriction of $(\hat{T})^{\prime}$ to $\left(X^{\prime}\right)^{\prime}$. Thus we can suppose $W \subset \operatorname{ker}(\hat{T})^{\prime}$ and thus that W is a subspace of Z^{\prime} (see, for example, Brown and Page [1, page 196]). Let $\pi: Z \rightarrow W^{\prime}$ be the canonical map defined by $(\pi(z)) w=w(z)$. If π is an isometric embedding then it follows that Z is reflexive (respectively, superreflexive) since it is then a closed subspace of the reflexive space (respectively, superreflexive space) W^{\prime}. To establish that π is an isometry it suffices to show that if $\|z\|=1$ then for each $\varepsilon>0$ there exists an element $w \in W_{1}$ such that $|w(z)|>1-2 \varepsilon$. Suppose to the contrary that $z=\hat{q}+\bar{\Re}(\hat{T})$ is an element of Z for which $w(z)<1-2 \varepsilon$ for all $w \in W_{1}$ where $\varepsilon>0$ is fixed. This implies $g(q)<1-2 \varepsilon$ for all norm 1 elements $g \in{ }^{*}\left(Y^{\prime}\right)$ such that $g \simeq 0$ on $T\left(X_{1}\right)$. Now $d(\hat{q}, \bar{\Re}(\hat{T}))=1$ and so $d\left(q, T\left(X_{n}\right)\right)>1-\varepsilon$ for $n=1,2,3, \ldots$ Consequently there is an $\omega \in * \mathbf{N} \backslash \mathbf{N}$ such that $d\left(q, T\left(X_{\omega}\right)\right)>1-$ ε. We now argue in a similar way to the last part of the proof of Lemma 1. Specifically there exists a norm 1 functional $g \in Y^{\prime}$ with the property that $g\left(T\left(X_{\omega}\right)-q\right) \geqslant 1-\varepsilon$. If $g\left(T\left(X_{1}\right)\right) \simeq 0$ then $-g(q) \geqslant 1-2 \varepsilon$ which contradicts the above assumption on q. If $g \neq 0$ on $T\left(X_{1}\right)$ then $g\left(T\left(X_{\omega}\right)\right)$ contains infinite values and $g(q)$ must take an infinite value which is impossible. Thus we can conclude that there is no point z with the stated property and it follows that π is an isometry.

Theorem 2. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. Then $T \in \psi_{-}(X, Y)$ if and only if \hat{T} has reflexive cokernel (or, equivalently, superreflexive cokernel).

Proof. Suppose \hat{T} has reflexive cokernel. Then the conjugate space of $Y / \bar{R}(\hat{T})$ is reflexive, that is, $(\bar{\Re}(\hat{T}))^{\perp}=\operatorname{ker} \hat{T}$, is reflexive. Consequently $\operatorname{ker}\left(T^{\prime}\right)$ is reflexive whence $T^{\prime} \in \psi_{+}\left(Y^{\prime}, X^{\prime}\right)$ by the characterization of [8]. The converse
implication now follows by this characterization and Lemma 2. The equivalent result in term of superreflexivity follows by the same argument.

We comment that if M is a closed subspace of Y then Y / M is reflexive if and only if $Y^{\prime \prime}=Y+M^{\perp \perp}$. This fact shows the connection between what we are now doing and the class in [8] denoted by $\mathfrak{D T}(X, Y)$ (see [8, Proposition]).

Theorem 3. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. Then $T \in \psi_{-}(X, Y)$ if and only if $\operatorname{ker}(\hat{T})^{\prime}=\operatorname{ker}\left(T^{\prime}\right)^{\hat{}}$.

Proof. We begin by supposing that $\operatorname{ker}\left(T^{\prime}\right) \subset \operatorname{ker}(\hat{T})^{\prime}=(\bar{\Re}(\hat{T}))^{\perp}$. Then there exists a nonzero $\phi \in\left((\bar{\Re}(\hat{T}))^{\perp}\right)^{\prime}=(\hat{Y} / \overline{\mathscr{R}}(\hat{T}))^{\prime \prime}$ which vanishes on $\operatorname{ker}\left(T^{\prime}\right)$. By Theorem $2 \hat{Y} / \overline{\mathscr{R}}(\hat{T})$ is reflexive and thus we can suppose $\phi \in \hat{Y} / \bar{\Omega}(\hat{T})$, say $\phi=\hat{q}+\bar{\Re}(\hat{T})$. We then have $\hat{g}(q+\overline{\mathbf{R}}(\hat{T}))=0$ for all $\hat{g} \in \operatorname{ker}\left(T^{\prime}\right)$. Consequently $g(q) \simeq 0$ whenever $g \simeq 0$ on $T\left(X_{1}\right)$. We then argue as in Lemma 2. Since ϕ is nontrivial $\hat{q} \notin \bar{\Omega}(\hat{T})$ and thus there exists a (standard) positive real δ such that $d\left(q, T\left(X_{n}\right)\right)>\delta$ for $n=1,2, \ldots$. Thus there is an $\omega \in{ }^{*} \mathbf{N} \backslash \mathbf{N}$ such that $d\left(q, T\left(X_{\omega}\right)\right)>\delta$ and in turn a norm 1 element $g \in^{*} Y^{\prime}$ such that $g\left(T\left(X_{\omega}\right)-q\right)$ $\geqslant \delta$. If $g \simeq 0$ on $T\left(X_{1}\right)$ then $g(q)<-\delta / 2$ which contradicts our above assumption on q. On the other hand if $g \not \neq 0$ on $T\left(X_{1}\right)$ then inf $g\left(T\left(X_{\omega}\right)\right)$ is an infinite negative nonstandard real. This then contradicts the inequality $g(q) \geqslant-\|q\|$. Consequently ϕ does not exist and we have the conclusion $\operatorname{ker}\left(T^{\prime}\right)^{\hat{\prime}}=\operatorname{ker}(\hat{T})^{\prime}$.

The converse argument is essentially that used by Henson and Moore in [3, Theorem 8.5]. Suppose that $\operatorname{ker}\left(T^{\prime}\right)^{\hat{1}}=\operatorname{ker}(\hat{T})^{\prime}$, and that $T \notin \psi_{-}(X, Y)$. Following the notation of Lemma 2 let W and Z denote $\operatorname{ker}\left(T^{\prime}\right)^{\hat{*}}$ and $\hat{Y} / \overline{\mathscr{R}}(\hat{T})$ respectively so that $W=Z^{\prime}$. Since Z is not reflexive by James' characterization of reflexivity, [6, Theorem 3], there exists a real number r satisfying $0<r<1$ such that there exist bounded sequences $\left\{q_{n}+\overline{\mathbf{R}}(\hat{T})\right\}$ and $\left\{\hat{\mathrm{g}}_{n}\right\}$ in Z and W respectively such that $\hat{g}_{i}\left(\hat{q}_{j}+\bar{\Re}(\hat{T})\right)>r$ for $i \leqslant j$, and such that $\hat{g}_{i}\left(\hat{q}_{j}+\bar{\Re}(\hat{T})\right)=0$ for $j<i$. Since ${ }^{*} \mathfrak{N}$ is assumed to be \aleph_{1}-saturated we can suppose that the sequences $\left\{q_{n}\right.$: $n \in \mathbf{N}\}$ and $\left\{g_{n}: n \in \mathbf{N}\right\}$ are restrictions of internal sequences $\left\{q_{n}: n \in{ }^{*} \mathbf{N}\right\}$ and $\left\{g_{n}: n \in{ }^{*} \mathbf{N}\right\}$ respectively. Thus we can assume there is an element $\omega \in{ }^{*} \mathbf{N} \backslash \mathbf{N}$ such that $g_{i}\left(q_{j}\right)>r$ for $1 \leqslant i \leqslant j \leqslant \omega$, and such that $g_{i}\left(q_{j}\right)<r / 2$ for $l \leqslant j<i \leqslant$ ω. Now the sequence $\left\{\hat{g}_{n}: n \in \mathbf{N}\right\}$ has a $\sigma(W, Z)$-limit point $\hat{g} \in W$. Hence $g\left(q_{j}\right) \geqslant r$ for $j \in{ }^{*} \mathbf{N} \backslash \mathbf{N}$ provided $j \leqslant \omega$, whilst $g\left(q_{j}\right) \leqslant r / 2$ for $j \in \mathbf{N}$. This implies \mathbf{N} is internal which is incorrect.

Before setting our final characterizations of $\psi(X, Y)$ we need to introduce two definitions. We say T has property Q if for all reals r satisfying $0<r<1$ there do
not exist sequences of norm 1 elements $\left\{y_{1}, y_{2}, \ldots\right\}$ in Y and $\left\{g_{1}, g_{2}, \ldots\right\}$ in Y^{\prime} such that
(i) $\left|g_{k}\right|<1 / k$ on $T\left(X_{1}\right)$ for all k;
(ii) $g_{j}\left(y_{i}\right)>r$ for $1 \leqslant i \leqslant j$, and $g_{j}\left(y_{i}\right)=0$ for $1 \leqslant j<i$.

We say T has property \hat{Q} if for all reals r satisfying $0<r<1$ there exists a positive integer n for which there do not exist finite sequences of norm 1 elements $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ in Y and $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ in Y^{\prime} satisfying conditions (i) and (ii) above.

Theorem 4. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. Then the following conditions are equivalent:
(i) T has property \hat{Q};
(ii) $T \in \psi_{-}(X, Y)$;
(iii) \hat{T} has property \hat{Q};
(iv) \hat{T} has property Q.

Proof. We show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i).
(i) implies (ii). Suppose $T \notin \psi_{-}(X, Y)$ so that $T^{\prime} \notin \psi_{+}\left(Y^{\prime}, X^{\prime}\right)$. Then, see [8], there exists a real number r satisfying $0<r<1$ such that for all positive integers n there exist finite sequences $\left\{g_{1}, \ldots, g_{n}\right\} \subset Y^{\prime}$ and $\left\{\phi_{1}, \ldots, \phi_{n}\right\} \subset Y^{\prime \prime}$ such that $\left\|T^{\prime} g_{k}\right\|<1 / k$ for $k=1,2, \ldots, n ; \phi_{i}\left(g_{j}\right)>r$ for $1 \leqslant i \leqslant j \leqslant n$ and $\phi_{i}\left(g_{j}\right)=0$ for $1 \leqslant j<i \leqslant n$. Then by Helly's theorem we can assume that $\phi_{k} \in Y$ for $k=$ $1,2, \ldots, n$; and it follows that T doesn't possess property \hat{Q}.
(ii) implies (iii). Let $E=\hat{X}, F=\hat{Y}, S=\hat{T}$ and suppose these objects are embedded with X, Y, T etc. in a structure \mathscr{H} of which $* \mathscr{K}$ is an \aleph_{1}-saturated enlargement. If S doesn't possess property \hat{Q} then for some (standard) r satisfying $0<r<1$ there exist, for $\omega \in{ }^{*} \mathbf{N} \backslash \mathbf{N}$, finite sequences of norm one elements $\left\{q_{1}, q_{2}, \ldots, q_{2 \omega}\right\}$ in ${ }^{*} \mathbf{F}$ and $\left\{g_{1}, g_{2}, \ldots, g_{\omega}\right\}$ in F^{\prime} for which $\left|g_{k}\right|<1 / k$ on $S\left(E_{1}\right)$ for $k=1,2, \ldots, 2 \omega ; g_{j}\left(q_{i}\right)>r$ for $1 \leqslant i \leqslant j \leqslant 2 \omega$, and $g_{j}\left(q_{i}\right)=0$ for $1 \leqslant j<i$ $\leqslant 2 \omega$. For $k=1,2,3, \ldots$ let $\hat{p}_{k}=\hat{q}_{\omega+k}$ and $\hat{f}_{k}=\hat{g}_{\omega+k}$. These are elements in the hulls \hat{F} and $\left(F^{\prime}\right) \hat{\text { c }}$ constructed with respect to ${ }^{*} \mathscr{R}$. Then $\hat{S}^{\prime} \hat{f}_{k}=0$ for $k=1,2,3, \ldots$; $\hat{f}_{j}\left(\hat{p}_{i}\right)>r$ for $i \leqslant j$ and $\hat{f}_{j}\left(\hat{p}_{i}\right)=0$ for $j>i$. Consequently by the James' characterization of reflexivity $\operatorname{ker} \hat{S}^{\prime}$ is not reflexive. C. Ward Henson has shown that a Banach space and its hull have isometric hulls when constructed from an $\boldsymbol{\kappa}_{1}$-saturated enlargement which has the $\boldsymbol{\kappa}_{0}$-isomorphism property (see [4, Propositions 1 and 2] and [5]). Moreover he has an "isometric nonstandard hulls" theorem for operators in which it is established that the isometries respect the induced action of T (private communication).

Consequently ker \hat{T} is not reflexive (when constructed with respect to such a $* \mathfrak{H}$), and therefore $T \notin \psi_{-}(X, Y)$. Since (iii) trivially implies (iv) we are finished once we show (iv) implies (i).
(iv) implies (i). Suppose T doesn't possess property \hat{Q}. Then for some (standard) real r satisfying $0<r<1$ and $\omega \in * \mathbf{N}$ there exist finite sequences of norm 1 elements $\left\{q_{1}, q_{2}, \ldots, q_{\omega}\right\}$ in ${ }^{*} Y$ and $\left\{g_{1}, g_{2}, \ldots, g_{\omega}\right\}$ in ${ }^{*} Y^{\prime}$ satisfying conditions (i) and (ii) above. But then the sequences $\left\{\hat{q}_{k}: k \in \mathbf{N}\right\}$ and $\left\{\hat{g}_{k}: k \in \mathbf{N}\right\}$ satisfy $\left|\hat{g}_{k}\right|<1 / k$ on $\hat{T}\left(\hat{X}_{1}\right)$ for all $k, \hat{g}_{j}\left(\hat{q}_{i}\right)>r$ for $i \leqslant j$, and $\hat{g}_{j}\left(\hat{q}_{i}\right)=0$ for $j \leqslant i$. Thus \hat{T} does not possess property Q.

One consequence of the above result is that $T \in \psi_{-}(X, Y)$ if and only if $\hat{T} \in \psi_{-}(\hat{X}, \hat{Y})$. Now let $\psi(X, Y)=\psi_{+}(X, Y) \cap \psi_{-}(X, Y)$, that is, $T \in \psi(X, Y)$ if and only if \hat{T} has reflexive kernel and cokernel. It is a consequence of results proven here and in [8] that:
(i) $\psi(X, Y)$ is an open subset of $\mathscr{B}(X, Y)$;
(ii) $T \in \psi(X, Y)$ if and only if $T^{\prime} \in \psi\left(Y^{\prime}, X^{\prime}\right)$;
(iii) $T \in \psi(X, Y)$ if and only if $\hat{T} \in \psi(\hat{X}, \hat{Y})$; and
(iv) T is closed under perturbation by super weakly compact transformations.

4. Transformations with closed range

If T is a transformation with closed range the conditions for membership of $\psi_{+}(X, Y)$ or $\psi_{-}(X, Y)$ can be simplified.

Lemma 3. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$. Then the following properties are equivalent:
(i) $\mathcal{R}(T)$ is closed;
(ii) $(\Re(T) \hat{)}=\Omega(\hat{T})$;
(iii) $\Omega(\hat{T})$ is closed.

Proof. Suppose $\Re(T)$ is closed and let $(T(p) \hat{)} \in(\Re(T)) \hat{1}$. By the open mapping theorem we can assume p is finite so that $(T(p)) \hat{=}=\hat{T}(\hat{p})$. This shows $(\Re(T))=\Re(\hat{T})$. Since the hull of a normed space constructed with respect to an κ_{1}-saturated model is complete it follows that (ii) implies (iii). Finally suppose $\mathscr{R}(\hat{T})$ is closed. Let $Z=\bar{\Re}(T)$ and suppose $y \in Z_{1}$. Then $\hat{y} \in \bar{\Re}(\hat{T})=\Re(\hat{T})$ and so, by the open mapping theorem, there exists a positive constant r independent of y, such that $y=\hat{T}(\hat{p})$ for some point $p \in{ }^{*} X_{r}$. By transfer it follows that $Z_{1} \subseteq\left(T\left(X_{r}\right)\right)^{-}$whence $Z_{1} \subseteq T\left(X_{2 r}\right)$ (see Brown and Page [1, Lemma 8.5.2]). This proves that (iii) implies (i).

We then have

Theorem 5. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$ has closed range. Then
(i) $T \in \psi_{+}(X, Y)$ if and only if $\operatorname{ker} T$ is superreflexive;
(ii) $T \in \psi_{-}(X, Y)$ if and only if $Y / \Re(T)$ is superreflexive.

Proof. We check (ii) first. We have $T \in \psi_{-}(X, Y)$ if and only if $\hat{Y} / \Re(\hat{T})$ is reflexive, or equivalently if and only if $\hat{Y} /(\Re(T))^{\hat{\prime}}$ is reflexive. But $\hat{Y} /(\Re(T))^{\hat{Y}}$ is isomorphically isometric to $(Y / \Re(T)) \hat{n}$ which is reflexive if and only if $Y / \Re(T)$ is superreflexive.

Next $T \in \psi_{+}(X, Y)$ if and only if $T^{\prime} \in \psi_{-}\left(Y^{\prime}, X^{\prime}\right)$, that is, if and only if $X^{\prime} / \mathcal{R}\left(T^{\prime}\right)$ is superreflexive since T^{\prime} has closed range. But for transformations with closed range $\mathscr{R}\left(T^{\prime}\right)=(\operatorname{ker} T)^{\perp}$ so that $X^{\prime} / \mathscr{R}\left(T^{\prime}\right)$ equals $X^{\prime} /(\operatorname{ker} T)^{\perp}$ which is isometrically isomorphic to $(\operatorname{ker} T)^{\prime}$. Thus $T \in \psi_{+}(X, Y)$ if and only if $(\operatorname{ker} T)^{\prime}$ is superreflexive, or equivalently if and only if $\operatorname{ker} T$ is superreflexive.

We finish by remarking that elements of $\psi_{+}(X, Y)$ with closed range do not in general form an open subset in $\mathscr{B}(X, Y)$. To see this let T be the zero operator on l^{2}, and let S be any operator on l^{2} which doesn't have closed range. Then T has closed range and is a member of $\psi_{+}(X, Y)$ although $T=\lambda S=\lambda S$ does not have closed range for any value of the scalar λ.

Acknowledgement

The author wishes to thank Professor C. Ward Henson for informing him of his isometric nonstandard hulls theorem for operators.

References

[1] A. L. Brown and A. Page, Elements of functional analysis (Van Nostrand Reinhold, London, 1970).
[2] N. Dunford and J. T. Schwartz, Linear operators, Part 1 (Interscience, New York, 1958).
[3] C. W. Henson and L. C. Moore, Jr., 'The nonstandard theory of topological vector spaces,' Trans. A mer. Math. Soc. 172 (1972), 405-435; Erratum, ibid. 184 (1973), 509.
[4] C. Ward Henson, 'When do two Banach spaces have isometrically isomorphic nonstandard hulls?', Israel J. Math. 22 (1975), 57-67.
[5] C. Ward Henson, 'Nonstandard hulls of Banach spaces,' Israel J. Math. 25 (1976), 108-144.
[6] R. C. James, 'Weakly compact sets,' Trans. Amer. Math. Soc. 113 (1964), 129-140.
[7] N. Kalton and A. Wilansky, 'Tauberian operators on Banach spaces', Proc. Amer. Math. Soc. 57 (1976), 251-255.
[8] D. G. Tacon, 'Generalized semi-Fredholm transformations,' J. Austral. Math. Soc., to appear.
[9] A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
[10] K.-W. Yang, 'The generalized Fredholm operators,' Trans. Amer. Math. Soc. 216 (1976), 313-326.

University of New South Wales
P.O. Box 1

Kensington, N.S.W. 2033
Australia

[^0]: © 1984 Australian Mathematical Society 0263-6115/84 \$A2.00 +0.00

