J. Austral. Math. Soc. (Series A) 37 (1984), 89-97

GENERALIZED FREDHOLM TRANSFORMATIONS

D. G. TACON

(Received 29 November 1982)

Abstract

In an earlier paper we showed that the set $\psi_+(X, Y)$ of super Tauberian transformations between two Banach spaces X and Y forms an open subset of $\mathfrak{B}(X, Y)$ which is closed under perturbation by super weakly compact transformations. In this note we characterize a class dual to $\psi_+(X, Y)$ which we denote by $\psi_-(X, Y)$. We show that

 $T \in \psi_+(X, Y)$ if and only if $T' \in \psi_-(Y', X')$

and that

 $T' \in \psi_+(Y', X')$ if and only if $T \in \psi_-(X, Y)$

and provide standard and nonstandard characterizations of elements of $\psi_{-}(X, Y)$. These two classes thus play in some ways analogous roles to the sets of semi-Fredholm transforms $\phi_{+}(X, Y)$ and $\phi_{-}(X, Y)$.

Moreover $\psi(X, Y) = \psi_+(X, Y) \cap \psi_-(X, Y)$ then forms an open subset of $\mathfrak{B}(X, Y)$ closed under the taking of adjoints, under the taking of nonstandard hull extensions, and under perturbation by super weakly compact transformations.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 53.

1. Preliminaries

This paper is a continuation of the investigation begun in an earlier paper [8]. We are concerned with transformations between (real infinite dimensional) Banach spaces and with their extensions on the nonstandard hulls of these spaces. Our notation is generally consistent with [8] except for a limited number of instances which we comment on explicitly. As before we are assuming that our objects of study are embedded in some set theoretical structure \mathfrak{M} of which $*\mathfrak{M}$ is an \aleph_1 -saturated enlargement. For a Banach space X the nonstandard hull \hat{X} (with

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

respect to * \mathfrak{M}) is constructed by factoring the infinitesimal elements of *X from the finite elements of *X. The original space X is embedded in \hat{X} and \hat{X} is a Banach space under the norm $\|\hat{p}\| =$ standard part * $\|p\|$ where \hat{p} denotes the equivalence class determined by the finite element $p \in *X$. An element $S \in$ finite * $\mathfrak{B}(X, Y)$ defines an element $\hat{S} \in \mathfrak{B}(\hat{X}, \hat{Y})$ by the equation $\hat{S}(\hat{p}) = (S(p))$ where $p \in$ finite *X.

We remind the reader that the class of Tauberian transformations $\mathfrak{T}(X, X)$ consists of those transformations T between X and Y for which $T''x'' \in Y$ implies $x'' \in X$. The class of super Tauberian transformations, which we now denote by $\psi_+(X, Y)$, consists of those transformations which have Tauberian extensions between the nonstandard hulls, that is, $T \in \psi_+(X, Y)$ if $\hat{T} \in \mathfrak{T}(\hat{X}, \hat{Y})$. Theorem 3 in [8] provides alternate characterizations of $\psi_+(X, Y)$ the simplest of which is the condition that ker \hat{T} is reflexive or superreflexive. It seems to be an open question whether or not $T \in \mathfrak{T}(X, Y)$ implies $T'' \in \mathfrak{T}(X'', Y'')$ (see Kalton and Wilansky [7] and [8, Proposition]). The principal difficulty in establishing a result like this arises since a Tauberian transformation T need not have closed range. Thus one cannot assume that the range of the adjoint is the set of $f \in X'$ for which Tx = 0 implies f(x) = 0, that is, we cannot assume $\mathfrak{R}(T') = (\ker T)^{\perp}$ (see Dunford and Schwartz [2, page 487]).

Without the conclusion that $T'' \in \mathfrak{T}(X'', Y'')$ it is impossible to define a class of transformations which is completely dual to $\mathfrak{T}(X, Y)$. Yang [10] counters this problem by calling a transformation T co-Tauberian if T has closed range and reflexive cokernel. Then, for transformations with closed range, Tauberian and co-Tauberian transformations are completely dual. It is not true that a super Tauberian transformation T need have closed range (see Section 4) but nevertheless if T is super Tauberian then T'' is super Tauberian.

2. The existence of $\psi_{-}(X, Y)$

We show in this section that there exists a class of transformations satisfying the duality properties stated in the abstract.

LEMMA 1. Let X and Y be Banach spaces and suppose T: $X \to Y$. Let $S = \{f_1, f_2, \ldots, f_n\}$ be a finite subset of X' and suppose $\phi \in X''$ is such that $||T''\phi|| < \varepsilon$ where $\varepsilon > 0$. Then, given $\delta > 0$, there exists a point $x \in X$ such that (i) $||x|| \le 3||\phi|| + \delta$; (ii) $f_i(x) = \phi(f_i)$ for i = 1, 2, ..., n; and (iii) $||Tx|| < \varepsilon$. PROOF. By Helly's theorem (Wilansky [9, page 103]) there exists a point $x_0 \in X$ with $||x_0|| \le ||\phi|| + \delta/2$ such that $(f_i)(x_0) = \phi(f_i)$ for i = 1, 2, ..., n. Let $S_{\perp} = \{x \in X: f_i(x) = 0$ for $i = 1, 2, ..., n\}$ and $S^{\perp} = \{x'' \in X'': x''(f_i) = 0$ for $i = 1, 2, ..., n\}$. Then $\phi \in x_0 + S^{\perp}$ and so we can write $\phi = x_0 + x''$ where $x'' \in S^{\perp}$ and $||x''|| \le 2||\phi|| + \delta/2$. Suppose $A = \{x \in S_{\perp} : ||x|| \le 2||\phi|| + \delta/2\}$ and $B = T(x_0) + T(A)$. Then there exists a net of points $\{x_{\alpha}\} \subset A$ such that $x_{\alpha} \to x''$ in the weak* topology. Consequently $Tx_{\alpha} \to T''x''$ in the weak* topology or equivalently $Tx_0 + Tx_{\alpha} \to T''\phi$ in the weak* topology. But $||T''\phi|| < \varepsilon$ so for all $g \in Y''$ with $||g|| \le 1$ there exists a point $b \in B$ such that $|g(b)| < \varepsilon$. Now let us suppose that $d(0, B) \ge \varepsilon$, so that $Y_{\varepsilon} \cap B = \emptyset$. Then B and Y_{ε} can be separated by a non-zero continuous linear functional (Dunford and Schwartz [2, page 417]). This means there exists an element $g \in Y'$ with ||g|| = 1 and a real constant d such that

$$g(B) \ge d$$
 and $g(Y_{\varepsilon}) \le d$.

But sup $g(Y_{\epsilon}) = \epsilon$ and so $d \ge \epsilon$ forcing the inequality $g(B) \ge \epsilon$. This is a contradiction and so $d(0, B) < \epsilon$. Thus there is a point $x_1 \in A$ such that $||T(x_0 + x_1)|| < \epsilon$ and $x = x_0 + x_1$ then satisfies the three conditions of the lemma.

THEOREM 1. Let X and Y be Banach spaces and suppose $T \in \psi_+(X, Y)$. Then $T'' \in \psi_+(X'', Y'')$.

PROOF. Suppose $T'' \notin \psi_+(X'', Y'')$. Then, by [8, Theorem 3], there exists a real number r satisfying 0 < r < 1 such that for all positive integers n there exist finite sequences of elements $\{\phi_1, \phi_2, \ldots, \phi_n\}$ in X'' and $\{F_1, F_2, \ldots, F_n\}$ in X'' such that $\|\phi_k\|, \|F_k\| < 1$ for $k = 1, 2, \ldots, n$ satisfying

$$F_j(\phi_i) > r \quad \text{for } 1 \le j \le i \le n \text{ and}$$

$$F_i(x_i) = 0 \quad \text{for } 1 \le i < j \le n.$$

with $||x_k|| < 3$ and $||Tx_k|| < 1/k$ for k = 1, 2, ..., n. It follows by [8, Theorem 3] that $T \notin \psi_+(X, Y)$.

We now define $\psi_{-}(X, Y)$ to consist of those transformations $T \in \mathfrak{B}(X, Y)$ for which $T' \in \psi_{+}(Y', X')$. Since $\psi_{+}(Y', X')$ is open it follows that $\psi_{-}(X, Y)$ is an open subset of $\mathfrak{B}(X, Y)$. Further, since the converse of Theorem 1 is also true, we have

 $T \in \psi_+(X, Y)$ if and only if $T' \in \psi_-(Y', X')$.

D. G. Tacon

3. Characterizations of the set $\psi_{-}(X, Y)$

If $T \in \mathfrak{B}(X, Y)$ we let $\overline{\mathfrak{R}}(T)$ denote the closure of the range of T, and we then call the quotient space $Y/\overline{\mathfrak{R}}(T)$ the cokernel of T. We shall show that $T \in \psi_{-}(X, Y)$ if and only if \hat{T} has reflexive cokernel, or equivalently, a superreflexive cokernel. The proof of this result would be immediate except that, in general, $(\hat{T})' \neq (T')$; recall $(\hat{X})' = (X')$ if and only if X is superreflexive (see Henson and Moore [3, Theorem 8.5]).

LEMMA 2. Let X and Y be Banach spaces and suppose T: $X \to Y$. If ker(T') is reflexive (respectively, superreflexive) then \hat{T} has reflexive cokernel (respectively, superreflexive cokernel).

PROOF. Let W and Z denote ker(T') and $\hat{Y}/\overline{\Re}(\hat{T})$ respectively. We can consider (X') to be embedded in $(\hat{X})'$ in which case (T') is the restriction of $(\hat{T})'$ to (X'). Thus we can suppose $W \subset \ker(\hat{T})'$ and thus that W is a subspace of Z' (see, for example, Brown and Page [1, page 196]). Let $\pi: Z \to W'$ be the canonical map defined by $(\pi(z))w = w(z)$. If π is an isometric embedding then it follows that Z is reflexive (respectively, superreflexive) since it is then a closed subspace of the reflexive space (respectively, superreflexive space) W'. To establish that π is an isometry it suffices to show that if ||z|| = 1 then for each $\varepsilon > 0$ there exists an element $w \in W_1$ such that $|w(z)| > 1 - 2\varepsilon$. Suppose to the contrary that $z = \hat{q} + \overline{\Re}(\hat{T})$ is an element of Z for which $w(z) < 1 - 2\varepsilon$ for all $w \in W_1$ where $\varepsilon > 0$ is fixed. This implies $g(q) < 1 - 2\varepsilon$ for all norm 1 elements $g \in *(Y')$ such that $g \simeq 0$ on $T(X_1)$. Now $d(\hat{q}, \overline{\Re}(\hat{T})) = 1$ and so $d(q, T(X_n)) > 1 - \varepsilon$ for $n = 1, 2, 3, \dots$ Consequently there is an $\omega \in *N \setminus N$ such that $d(q, T(X_{\omega})) > 1 - 1$ ϵ . We now argue in a similar way to the last part of the proof of Lemma 1. Specifically there exists a norm 1 functional $g \in Y'$ with the property that $g(T(X_{\alpha}) - q) \ge 1 - \epsilon$. If $g(T(X_1)) \simeq 0$ then $-g(q) \ge 1 - 2\epsilon$ which contradicts the above assumption on q. If $g \neq 0$ on $T(X_1)$ then $g(T(X_{\omega}))$ contains infinite values and g(q) must take an infinite value which is impossible. Thus we can conclude that there is no point z with the stated property and it follows that π is an isometry.

THEOREM 2. Let X and Y be Banach spaces and suppose T: $X \to Y$. Then $T \in \psi_{-}(X, Y)$ if and only if \hat{T} has reflexive cohernel (or, equivalently, superreflexive cohernel).

PROOF. Suppose \hat{T} has reflexive cokernel. Then the conjugate space of $Y/\overline{\mathfrak{R}}(\hat{T})$ is reflexive, that is, $(\overline{\mathfrak{R}}(\hat{T}))^{\perp} = \ker \hat{T}$, is reflexive. Consequently $\ker(T')$ is reflexive whence $T' \in \psi_+(Y', X')$ by the characterization of [8]. The converse

implication now follows by this characterization and Lemma 2. The equivalent result in term of superreflexivity follows by the same argument.

We comment that if M is a closed subspace of Y then Y/M is reflexive if and only if $Y'' = Y + M^{\perp \perp}$. This fact shows the connection between what we are now doing and the class in [8] denoted by $\mathfrak{DT}(X, Y)$ (see [8, Proposition]).

THEOREM 3. Let X and Y be Banach spaces and suppose T: $X \to Y$. Then $T \in \psi_{-}(X, Y)$ if and only if ker $(\hat{T})' = \text{ker}(T')$.

PROOF. We begin by supposing that $\ker(T') \subseteq \ker(\hat{T})' = (\overline{\Re}(\hat{T}))^{\perp}$. Then there exists a nonzero $\phi \in ((\overline{\Re}(\hat{T}))^{\perp})' = (\hat{Y}/\overline{\Re}(\hat{T}))''$ which vanishes on $\ker(T')$. By Theorem 2 $\hat{Y}/\overline{\Re}(\hat{T})$ is reflexive and thus we can suppose $\phi \in \hat{Y}/\overline{\Re}(\hat{T})$, say $\phi = \hat{q} + \overline{\Re}(\hat{T})$. We then have $\hat{g}(q + \overline{\mathbf{R}}(\hat{T})) = 0$ for all $\hat{g} \in \ker(T')$. Consequently $g(q) \simeq 0$ whenever $g \simeq 0$ on $T(X_1)$. We then argue as in Lemma 2. Since ϕ is nontrivial $\hat{q} \notin \overline{\Re}(\hat{T})$ and thus there exists a (standard) positive real δ such that $d(q, T(X_n)) > \delta$ for n = 1, 2, ... Thus there is an $\omega \in *\mathbf{N}\setminus\mathbf{N}$ such that $d(q, T(X_\omega)) > \delta$ and in turn a norm 1 element $g \in *Y'$ such that $g(T(X_\omega) - q) \ge \delta$. If $g \simeq 0$ on $T(X_1)$ then $g(q) < -\delta/2$ which contradicts our above assumption on q. On the other hand if $g \neq 0$ on $T(X_1)$ then inf $g(T(X_\omega))$ is an infinite negative nonstandard real. This then contradicts the inequality $g(q) \ge -||q||$. Consequently ϕ does not exist and we have the conclusion $\ker(T') = \ker(\hat{T})'$.

The converse argument is essentially that used by Henson and Moore in [3, Theorem 8.5]. Suppose that ker $(T') = \text{ker}(\hat{T})'$, and that $T \notin \psi_{-}(X, Y)$. Following the notation of Lemma 2 let W and Z denote ker(T') and $\hat{Y}/\overline{\Re}(\hat{T})$ respectively so that W = Z'. Since Z is not reflexive by James' characterization of reflexivity, [6, Theorem 3], there exists a real number r satisfying 0 < r < 1 such that there exist bounded sequences $\{q_n + \overline{\mathbf{R}}(\hat{T})\}$ and $\{\hat{g}_n\}$ in Z and W respectively such that $\hat{g}_i(\hat{q}_j + \overline{\Re}(\hat{T})) > r$ for $i \leq j$, and such that $\hat{g}_i(\hat{q}_j + \overline{\Re}(\hat{T})) = 0$ for j < i. Since * \mathfrak{M} is assumed to be \aleph_1 -saturated we can suppose that the sequences $\{q_n: n \in \mathbb{N}\}$ and $\{g_n: n \in \mathbb{N}\}$ are restrictions of internal sequences $\{q_n: n \in \mathbb{N}\}$ and $\{g_n: n \in \mathbb{N}\}$ respectively. Thus we can assume there is an element $\omega \in \mathbb{N}\setminus\mathbb{N}$ such that $g_i(q_j) > r$ for $1 \leq i \leq j \leq \omega$, and such that $g_i(q_j) < r/2$ for $1 \leq j < i \leq \omega$. Now the sequence $\{\hat{g}_n: n \in \mathbb{N}\}$ has a $\sigma(W, Z)$ -limit point $\hat{g} \in W$. Hence $g(q_j) \geq r$ for $j \in \mathbb{N}\setminus\mathbb{N}$ provided $j \leq \omega$, whilst $g(q_j) \leq r/2$ for $j \in \mathbb{N}$. This implies \mathbb{N} is internal which is incorrect.

Before setting our final characterizations of $\psi(X, Y)$ we need to introduce two definitions. We say T has property Q if for all reals r satisfying 0 < r < 1 there do

[6]

not exist sequences of norm 1 elements $\{y_1, y_2, ...\}$ in Y and $\{g_1, g_2, ...\}$ in Y' such that

(i) $|g_k| \le 1/k$ on $T(X_1)$ for all k;

(ii) $g_i(y_i) > r$ for $1 \le i \le j$, and $g_i(y_i) = 0$ for $1 \le j < i$.

We say T has property \hat{Q} if for all reals r satisfying 0 < r < 1 there exists a positive integer n for which there do not exist finite sequences of norm 1 elements $\{y_1, y_2, \ldots, y_n\}$ in Y and $\{g_1, g_2, \ldots, g_n\}$ in Y' satisfying conditions (i) and (ii) above.

THEOREM 4. Let X and Y be Banach spaces and suppose T: $X \rightarrow Y$. Then the following conditions are equivalent:

(i) T has property \hat{Q} ;

(ii) $T \in \psi_{-}(X, Y)$;

(iii) \hat{T} has property \hat{Q} ;

(iv) \hat{T} has property Q.

PROOF. We show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i).

(i) *implies* (ii). Suppose $T \notin \psi_{-}(X, Y)$ so that $T' \notin \psi_{+}(Y', X')$. Then, see [8], there exists a real number r satisfying 0 < r < 1 such that for all positive integers n there exist finite sequences $\{g_1, \ldots, g_n\} \subset Y'$ and $\{\phi_1, \ldots, \phi_n\} \subset Y''$ such that $||T'g_k|| < 1/k$ for $k = 1, 2, \ldots, n$; $\phi_i(g_j) > r$ for $1 \le i \le j \le n$ and $\phi_i(g_j) = 0$ for $1 \le j < i \le n$. Then by Helly's theorem we can assume that $\phi_k \in Y$ for $k = 1, 2, \ldots, n$; and it follows that T doesn't possess property \hat{Q} .

(ii) implies (iii). Let $E = \hat{X}$, $F = \hat{Y}$, $S = \hat{T}$ and suppose these objects are embedded with X, Y, T etc. in a structure \mathfrak{N} of which $*\mathfrak{N}$ is an \aleph_1 -saturated enlargement. If S doesn't possess property \hat{Q} then for some (standard) r satisfying 0 < r < 1 there exist, for $\omega \in *\mathbb{N}\setminus\mathbb{N}$, finite sequences of norm one elements $\{q_1, q_2, \ldots, q_{2\omega}\}$ in *F and $\{g_1, g_2, \ldots, g_{\omega}\}$ in F' for which $|g_k| < 1/k$ on $S(E_1)$ for $k = 1, 2, \ldots, 2\omega$; $g_j(q_i) > r$ for $1 \le i \le j \le 2\omega$, and $g_j(q_i) = 0$ for $1 \le j < i$ $\le 2\omega$. For $k = 1, 2, 3, \ldots$ let $\hat{p}_k = \hat{q}_{\omega+k}$ and $\hat{f}_k = \hat{g}_{\omega+k}$. These are elements in the hulls \hat{F} and (F') constructed with respect to $*\mathfrak{N}$. Then $\hat{S'}\hat{f}_k = 0$ for $k = 1, 2, 3, \ldots$; $\hat{f}_j(\hat{p}_i) > r$ for $i \le j$ and $\hat{f}_j(\hat{p}_i) = 0$ for j > i. Consequently by the James' characterization of reflexivity ker $\hat{S'}$ is not reflexive. C. Ward Henson has shown that a Banach space and its hull have isometric hulls when constructed from an \aleph_1 -saturated enlargement which has the \aleph_0 -isomorphism property (see [4, Propositions 1 and 2] and [5]). Moreover he has an "isometric nonstandard hulls" theorem for operators in which it is established that the isometries respect the induced action of T (private communication).

Consequently ker \hat{T} is not reflexive (when constructed with respect to such a $*\mathcal{N}$), and therefore $T \notin \psi_{-}(X, Y)$. Since (iii) trivially implies (iv) we are finished once we show (iv) implies (i).

(iv) implies (i). Suppose T doesn't possess property \hat{Q} . Then for some (standard) real r satisfying 0 < r < 1 and $\omega \in *\mathbb{N}$ there exist finite sequences of norm 1 elements $\{q_1, q_2, \ldots, q_{\omega}\}$ in *Y and $\{g_1, g_2, \ldots, g_{\omega}\}$ in *Y' satisfying conditions (i) and (ii) above. But then the sequences $\{\hat{q}_k: k \in \mathbb{N}\}$ and $\{\hat{g}_k: k \in \mathbb{N}\}$ satisfy $|\hat{g}_k| < 1/k$ on $\hat{T}(\hat{X}_1)$ for all $k, \hat{g}_j(\hat{q}_i) > r$ for $i \leq j$, and $\hat{g}_j(\hat{q}_i) = 0$ for $j \leq i$. Thus \hat{T} does not possess property Q.

One consequence of the above result is that $T \in \psi_{-}(X, Y)$ if and only if $\hat{T} \in \psi_{-}(\hat{X}, \hat{Y})$. Now let $\psi(X, Y) = \psi_{+}(X, Y) \cap \psi_{-}(X, Y)$, that is, $T \in \psi(X, Y)$ if and only if \hat{T} has reflexive kernel and cokernel. It is a consequence of results proven here and in [8] that:

(i) $\psi(X, Y)$ is an open subset of $\mathfrak{B}(X, Y)$;

- (ii) $T \in \psi(X, Y)$ if and only if $T' \in \psi(Y', X')$;
- (iii) $T \in \psi(X, Y)$ if and only if $\hat{T} \in \psi(\hat{X}, \hat{Y})$; and
- (iv) T is closed under perturbation by super weakly compact transformations.

4. Transformations with closed range

If T is a transformation with closed range the conditions for membership of $\psi_+(X, Y)$ or $\psi_-(X, Y)$ can be simplified.

LEMMA 3. Let X and Y be Banach spaces and suppose T: $X \rightarrow Y$. Then the following properties are equivalent:

(i) $\Re(T)$ is closed; (ii) $(\Re(T)) = \Re(\hat{T});$

(iii) $\Re(\hat{T})$ is closed.

PROOF. Suppose $\Re(T)$ is closed and let $(T(p)) \in (\Re(T))$. By the open mapping theorem we can assume p is finite so that $(T(p)) = \hat{T}(\hat{p})$. This shows $(\Re(T)) = \Re(\hat{T})$. Since the hull of a normed space constructed with respect to an \aleph_1 -saturated model is complete it follows that (ii) implies (iii). Finally suppose $\Re(\hat{T})$ is closed. Let $Z = \overline{\Re}(T)$ and suppose $y \in Z_1$. Then $\hat{y} \in \overline{\Re}(\hat{T}) = \Re(\hat{T})$ and so, by the open mapping theorem, there exists a positive constant r independent of y, such that $y = \hat{T}(\hat{p})$ for some point $p \in *X_r$. By transfer it follows that $Z_1 \subseteq (T(X_r))^-$ whence $Z_1 \subseteq T(X_{2r})$ (see Brown and Page [1, Lemma 8.5.2]). This proves that (iii) implies (i). We then have

THEOREM 5. Let X and Y be Banach spaces and suppose $T: X \rightarrow Y$ has closed range. Then

- (i) $T \in \psi_+(X, Y)$ if and only if ker T is superreflexive;
- (ii) $T \in \psi_{-}(X, Y)$ if and only if $Y/\Re(T)$ is superreflexive.

PROOF. We check (ii) first. We have $T \in \psi_{-}(X, Y)$ if and only if $\hat{Y}/\Re(\hat{T})$ is reflexive, or equivalently if and only if $\hat{Y}/(\Re(T))$ is reflexive. But $\hat{Y}/(\Re(T))$ is isomorphically isometric to $(Y/\Re(T))$ which is reflexive if and only if $Y/\Re(T)$ is superreflexive.

Next $T \in \psi_+(X, Y)$ if and only if $T' \in \psi_-(Y', X')$, that is, if and only if $X'/\Re(T')$ is superreflexive since T' has closed range. But for transformations with closed range $\Re(T') = (\ker T)^{\perp}$ so that $X'/\Re(T')$ equals $X'/(\ker T)^{\perp}$ which is isometrically isomorphic to $(\ker T)'$. Thus $T \in \psi_+(X, Y)$ if and only if $(\ker T)'$ is superreflexive, or equivalently if and only if ker T is superreflexive.

We finish by remarking that elements of $\psi_+(X, Y)$ with closed range do not in general form an open subset in $\mathfrak{B}(X, Y)$. To see this let T be the zero operator on l^2 , and let S be any operator on l^2 which doesn't have closed range. Then T has closed range and is a member of $\psi_+(X, Y)$ although $T = \lambda S = \lambda S$ does not have closed range for any value of the scalar λ .

Acknowledgement

The author wishes to thank Professor C. Ward Henson for informing him of his isometric nonstandard hulls theorem for operators.

References

- [1] A. L. Brown and A. Page, *Elements of functional analysis* (Van Nostrand Reinhold, London, 1970).
- [2] N. Dunford and J. T. Schwartz, Linear operators, Part 1 (Interscience, New York, 1958).
- [3] C. W. Henson and L. C. Moore, Jr., 'The nonstandard theory of topological vector spaces,' Trans. Amer. Math. Soc. 172 (1972), 405-435; Erratum, ibid. 184 (1973), 509.
- [4] C. Ward Henson, 'When do two Banach spaces have isometrically isomorphic nonstandard hulls?,' Israel J. Math. 22 (1975), 57-67.
- [5] C. Ward Henson, 'Nonstandard hulls of Banach spaces,' Israel J. Math. 25 (1976), 108-144.
- [6] R. C. James, 'Weakly compact sets,' Trans. Amer. Math. Soc. 113 (1964), 129-140.

Generalized Fredholm transformations

- [7] N. Kalton and A. Wilansky, 'Tauberian operators on Banach spaces', Proc. Amer. Math. Soc. 57 (1976), 251-255.
- [8] D. G. Tacon, 'Generalized semi-Fredholm transformations,' J. Austral. Math. Soc., to appear.
- [9] A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
- [10] K.-W. Yang, 'The generalized Fredholm operators,' Trans. Amer. Math. Soc. 216 (1976), 313-326.

University of New South Wales P.O. Box 1 Kensington, N.S.W. 2033 Australia