Skip to main content Accessibility help
×
Home

CHARACTERIZING HERMITIAN VARIETIES IN THREE- AND FOUR-DIMENSIONAL PROJECTIVE SPACES

  • ANGELA AGUGLIA (a1)

Abstract

We characterize Hermitian cones among the surfaces of degree $q+1$ of $\text{PG}(3,q^{2})$ by their intersection numbers with planes. We then use this result and provide a characterization of nonsingular Hermitian varieties of $\text{PG}(4,q^{2})$ among quasi-Hermitian ones.

Copyright

Footnotes

Hide All

The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).

Footnotes

References

Hide All
[1] Aguglia, A., ‘Quasi-Hermitian varieties in PG(r, q 2), q even’, Contrib. Discrete Math. 8(1) (2013), 3137.
[2] Aguglia, A., Bartoli, D., Storme, L. and Weiner, Zs., ‘A characterization of Hermitian varieties as codewords’, Electron. J. Combin. 25(1) (2018), P1.71.
[3] Aguglia, A., Cossidente, A. and Korchmáros, G., ‘On quasi-Hermitian varieties’, J. Combin. Des. 20(10) (2012), 433447.
[4] Bose, R. C. and Burton, R. C., ‘A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes’, J. Combin. Theory 1 (1966), 96104.
[5] Buekenhout, F., ‘Existence of unitals in finite translation planes of order q 2 with a kernel of order q ’, Geom. Dedicata 5 (1976), 189194.
[6] De Winter, S. and Schillewaert, J., ‘A note on quasi-Hermitian varieties and singular quasi-quadrics’, Bull. Belg. Math. Soc. Simon Stevin 17(5) (2010), 911918.
[7] De Winter, S. and Schillewaert, J., ‘Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2’, Combinatorica 30(1) (2010), 2545.
[8] Hirschfeld, J. W. P., Finite Projective Spaces of Three Dimensions (Oxford University Press, Oxford, 1985).
[9] Hirschfeld, J. W. P., Projective Geometries over Finite Fields, 2nd edn (Oxford University Press, Oxford, 1998).
[10] Hirschfeld, J. W. P., Storme, L., Thas, J. A. and Voloch, J. F., ‘A characterization of Hermitian curves’, J. Geom. 41(1–2) (1991), 7278.
[11] Hirschfeld, J. W. P. and Thas, J. A., General Galois Geometries (Springer, London, 1991).
[12] Homma, M. and Kim, S. J., ‘Around Sziklai’s conjecture on the number of points of a plane curve over a finite field’, Finite Fields Appl. 15(4) (2009), 468474.
[13] Homma, M. and Kim, S. J., ‘Sziklai’s conjecture on the number of points of a plane curve over a finite field III’, Finite Fields Appl. 16(5) (2010), 315319.
[14] Homma, M. and Kim, S. J., ‘The characterization of Hermitian surfaces by the number of points’, J. Geom. 107 (2016), 509521.
[15] Innamorati, S., Zanetti, M. and Zuanni, F., ‘On two character (q 7 + q 5 + q 2 + 1)-sets in PG(4, q 2)’, J. Geom. 106(2) (2015), 287296.
[16] Masaaki, H. and Kim, S. J., ‘Sziklai’s conjecture on the number of points of a plane curve over a finite field II’, in: Finite Fields: Theory and Applications, Contemporary Mathematics, 518 (American Mathematical Society, Providence, RI, 2010), 225234.
[17] Metz, R., ‘On a class of unitals’, Geom. Dedicata 8 (1979), 125126.
[18] Pavese, F., ‘Geometric constructions of two-character sets’, Discrete Math. 338(3) (2015), 202208.
[19] Schillewaert, J. and Thas, J. A., ‘Characterizations of Hermitian varieties by intersection numbers’, Des. Codes Cryptogr. 50 (2009), 4160.
[20] Segre, B., ‘Le geometrie di Galois’, Ann. Mat. Pura Appl. 4(48) (1959), 196.
[21] Segre, B., ‘Forme e geometrie Hermitiane, con particolare riguardo al caso finito’, Ann. Mat. Pura Appl. 70(4) (1965), 1201.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

CHARACTERIZING HERMITIAN VARIETIES IN THREE- AND FOUR-DIMENSIONAL PROJECTIVE SPACES

  • ANGELA AGUGLIA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed