[1]
Ash, C. J., Jockusch, C. G. Jr., and Knight, J. F.,
*Jumps of orderings*
. Transactions of the American Mathematical Society, vol. 319 (1990), no. 2, pp. 573–599.

[2]
Blum, L., **
***Generalized algebraic theories: A model theoretic approach*
, Ph.D. thesis, Massachusetts Institute of Technology, 1968.

[3]
Blum, L.,
*Differentially closed fields: A model-theoretic tour*
, Contributions to Algebra (collection of papers dedicated to Ellis Kolchin) (Bass, H., Cassidy, P., and Kovacic, J., editors), Academic Press, New York, 1977, pp. 37–61.

[4]
Downey, R. and Jockusch, C. Jr.,
*Every low Boolean algebra is isomorphic to a recursive one*
. Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871–880.

[5]
Downey, R. and Knight, J. F.,
*Orderings with αth jump degree* 0^{(α)}
. Proceedings of the American Mathematical Society, vol. 114 (1992), no. 2, pp. 545–552.

[6]
Frolov, A., Harizanov, V., Kalimullin, I., Kudinov, O., and Miller, R.,
*Degree spectra of high*
_{
n
}
*and non-low*
_{
n
}
*degrees*
. Journal of Logic and Computation, vol. 22 (2012), no. 4, pp. 755–777.

[7]
Harrington, L., *Recursively presentable prime models*, this Journal, vol. 39 (1974), no. 2, pp. 305–309.

[8]
Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., and Slinko, A. M.,
*Degree spectra and computable dimensions in algebraic structures*
. Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71–113.

[9]
Hrushovski, E. and Itai, M.,
*On model complete differential fields*
. Transactions of the American Mathematical Society, vol. 355 (2003), no. 11, pp. 4267–4296.

[10]
Hrushovski, E. and Sokolović, Z., *Minimal subsets of differentially closed fields*, preprint from the early 1990s.

[11]
Jockusch, C. G. and Soare, R. I.,
*Degrees of orderings not isomorphic to recursive linear orderings*
. Annals of Pure and Applied Logic, vol. 52 (1991), pp. 39–64.

[12]
Knight, J. F., *Degrees coded in jumps of orderings*, this Journal, vol. 51 (1986), pp. 1034–1042.

[13]
Knight, J. F. and Stob, M., *Computable Boolean algebras*, this Journal, vol. 65 (2000), no. 4, pp. 1605–1623.

[14]
Marker, D. and Kernels, M., **
***Connections Between Model Theory and Algebraic and Analytic Geometry*
, Quaderni di Matematica, vol. 6, Dipartimento di Matematica II Università di Napoli, Caserta, 2000, pp. 1–21.

[15]
Marker, D.,
*Model theory of differential fields*
, Model Theory of Fields (Marker, D., Messmer, M., and Pillay, A., editors), ASL Lecture Notes in Logic, vol. 5, A.K. Peters, Ltd., Wellesley, MA, 2006, pp. 41–109.

[16]
Miller, R. G.,
*Computable fields and Galois theory*
, Notices of the AMS, vol. 55 (2008), no. 7, pp. 798–807.

[17]
Miller, R., Ovchinnikov, A., and Trushin, D.,
*Computing constraint sets for differential fields*
. Journal of Algebra, vol. 407 (2014), pp. 316–357.

[18]
Miller, R., Poonen, B., Schoutens, H., and Shlapentokh, A., *A computable functor from graphs to fields*, submitted for publication.

[19]
Montalbán, A., Mathematical Theory and Computational Practice: Fifth Conference on Computability in Europe, CiE 2009 (Ambos-Spies, K., Löwe, B., and Merkle, W., editors), Lecture Notes in Computer Science, vol. 5635, Springer-Verlag, Berlin, 2009.

[20]
Nagloo, J. and Pillay, A., *On algebraic relations between solutions of a generic Painlevé equation*, **
***Journal für die Reine und Angewandte Mathematik*
, to appear, doi: 10.1515/crelle-2014-0082.
[21]
Pillay, A..
*Differential fields*
, Lectures on Algebraic Model Theory, Fields Institute Monographs, vol. 15, American Mathematical Society, Providence, RI, 2002, pp. 1–45.

[22]
Pillay, A.,
*Differential algebraic groups and the number of countable differentially closed fields*
, Model Theory of Fields (Marker, D., Messmer, M., and Pillay, A., editors), ASL Lecture Notes in Logic, vol. 5, A.K. Peters, Ltd., Wellesley, MA, 2006, pp. 111–133.

[23]
Rabin, M.,
*Computable algebra, general theory, and theory of computable fields*
. Transactions of the American Mathematical Society, vol. 95 (1960), pp. 341–360.

[24]
Richter, L. J., *Degrees of structures*, this Journal, vol. 46 (1981), pp. 723–731.

[25]
Ritt, J. F., Differential Equations from the Algebraic Standpoint, AMS Colloquium Publications, vol. XIV, American Mathematical Society, New York, 1932.

[26]
Sacks, G. E.. Saturated Model Theory, W.A. Benjamin, Reading, 1972.

[27]
Shelah, S., Harrington, L., and Makkai, M.,
*A proof of Vaught’s conjecture for ω-stable theories*
. Israel Journal of Mathematics, vol. 49 (1984), no. 1–3, pp. 259–280.

[28]
Slaman, T.,
*Relative to any nonrecursive set*
. Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2117–2122.

[29]
Soare, R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.

[30]
Soskova, A. A. and Soskov, I. N.,
*A jump inversion theorem for the degree spectra*
. Journal of Logic and Computation, vol. 19 (2009), no. 1, pp. 199–215.

[31]
Thurber, J. J.,
*Every low*
_{2}
*Boolean algebra has a recursive copy*
. Proceedings of the American Mathematical Society, vol. 123 (1995), pp. 3859–3866.

[32]
Wehner, S.,
*Enumerations, countable structures, and Turing degrees*
. Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2131–2139.