[1]Andretta, A. and Camerlo, R., The descriptive set theory of the Lebesgue density theorem. Advances in Mathematics, vol. 234 (2013), pp. 1–42.

[2]Barwise, J., Admissible Sets and Structures, Perspectives in Mathematical Logic, Springer-Verlag, Berlin-New York, 1975.

[3]Bienvenu, L., Greenberg, N., and Monin, B., Continuous higher randomness. Journal of Mathematical Logic, vol. 17 (2017), no. 1, pp. 1750004, 53.

[4]Bartoszyński, T. and Judah, H., Set Theory. On the Structure of the Real Line, A K Peters Ltd., Wellesley, MA, 1995.

[5]Carl, M., Randomness and degree theory for infinite time register machines. Computability, vol. 5 (2016), no. 2, pp. 181–196.

[6]Carl, M., Infinite time recognizability from generic oracles and the recognizable jump operator. Computability, vol. 6 (2017), no. 3, pp. 223–247.

[7]Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., and Weckbecker, G., The basic theory of infinite time register machines. Archive for Mathematical Logic, vol. 49 (2010), no. 2, pp. 249–273.

[8]Carl, M. and Schlicht, P., Infinite computations with random oracles. Notre Dame Journal of Formal Logic, vol. 58 (2017), no. 2, pp. 249–270.

[9]Carl, M., Schlicht, P., and Welch, P. D., Recognizable sets and Woodin cardinals: computation beyond the constructible universe. Annals of Pure and Applied Logic, to appear.

[10]Chong, C. T. and Yu, L., Randomness in the higher setting, this Journal, vol. 80 (2015), no. 4, pp. 1131–1148.

[11]Chong, C. T. and Yu, L.., Recursion Theory, De Gruyter Series in Logic and its Applications, vol. 8, De Gruyter, Berlin, 2015.

[12]Downey, R. G. and Hirschfeldt, D. R., Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.

[13]Friedman, S.-D. and Welch, P. D., Hypermachines, this Journal, vol. 76 (2011), no. 2, pp. 620–636.

[15]Hamkins, J. D. and Lewis, A., Infinite time Turing machines, this Journal, vol. 65 (2000), no. 2, pp. 567–604.

[16]Hjorth, G. and Nies, A., Randomness via effective descriptive set theory. Journal of the London Mathematical Society (2), vol. 75 (2007), no. 2, pp. 495–508.

[17]Ikegami, D., Forcing absoluteness and regularity properties. Annals of Pure and Applied Logic, vol. 161 (2010), no. 7, pp. 879–894.

[18]Jech, T., Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[19]Kanamori, A., The Higher Infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009.

[20]Kechris, A. S., Measure and category in effective descriptive set theory. Annals of Mathematical Logic, vol. 5 (1972/73), pp. 337–384.

[21]Koepke, P., Infinite Time Register Machines, Springer, Berlin, Heidelberg, 2006, pp. 257–266.

[22]Monin, B., Higher randomness and forcing with closed sets, 31st International Symposium on Theoretical Aspects of Computer Science (Mayr, E. W. and Portier, N., editors), Leibniz International Proceedings in Informatics, vol. 25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, 2014, pp. 566–577.

[23]Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009.

[24]Sacks, G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990.

[25]Schlicht, P. and Seyfferth, B., Tree representations via ordinal machines. Computability, vol. 1 (2012), no. 1, pp. 45–57.

[26]Welch, P. D., The length of infinite time Turing machine computations. Bulletin of the London Mathematical Society, vol. 32 (2000), no. 2, pp. 129–136.

[27]Welch, P. D.., Post’s and other problems in higher type supertasks, Classical and New Paradigms of Computation and their Complexity Hierarchies (Räsch, T., Löwe, B., and Piwinger, B., editors), Trends in Logic, vol. 23, Kluwer Academic Publishers, Dordrecht, 2004, pp. 223–237.

[28]Welch, P. D.., Characteristics of discrete transfinite time Turing machine models: Halting times, stabilization times, and normal form theorems. Theoretical Computer Science, vol. 410 (2009), no. 4–5, pp. 426–442.

[29]Yu, L., Descriptive set theoretical complexity of randomness notions. Fundamenta Mathematicae, vol. 215 (2011), no. 3, pp. 219–231.

[30]Yu, L. and Zhu, Y., On the reals which cannot be random, Computability and Complexity (Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., and Rosamond, F., editors), *Lecture Notes in Computer Science*, vol. 10010, Springer, Cham, 2017, pp. 611–622.