Skip to main content Accessibility help
×
Home

ON THE COMMUTATIVITY OF PULL-BACK AND PUSH-FORWARD FUNCTORS ON MOTIVIC CONSTRUCTIBLE FUNCTIONS

  • JORGE CELY (a1) and MICHEL RAIBAUT (a2)

Abstract

In this article, we study the commutativity between the pull-back and the push-forward functors on constructible functions in Cluckers–Loeser motivic integration.

Copyright

References

Hide All
[1]Cluckers, R., Gordon, J., and Halupczok, I., Integrability of oscillatory functions on local fields: Transfer principles. Duke Mathematical Journal, vol. 163 (2014), no. 8, pp. 15491600.
[2]Cluckers, R., Hales, T., and Loeser, F., Transfer principle for the fundamental lemma, On the Stabilization of the Trace Formula (Clozel, L., Harris, M., Labesse, J.-P., and Ngô, B.-C., editors), Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, International Press, Somerville, MA, 2011, pp. 309347.
[3]Cluckers, R. and Loeser, F., Fonctions constructibles et intégration motivique. I. Comptes rendus de l’Académie des Sciences Paris, vol. 339 (2004), no. 6, pp. 411416.
[4]Cluckers, R. and Loeser, F., Fonctions constructibles et intégration motivique. II. Comptes rendus de l’Académie des Sciences Paris, vol. 339 (2004), no. 7, pp. 487492.
[5]Cluckers, R. and Loeser, F., Ax-Kochen-Eršov theorems for p-adic integrals and motivic integration, Geometric Methods in Algebra and Number Theory (Bogomolov, F. and Tschinkel, Y., editors), Progress in Mathematics, vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 109137.
[6]Cluckers, R. and Loeser, F., Fonctions constructibles exponentielles, transformation de Fourier motivique et principe de transfert. Comptes rendus de l’Académie des Sciences Paris, vol. 341 (2005), no. 12, pp. 741746.
[7]Cluckers, R. and Loeser, F., Constructible motivic functions and motivic integration. Inventiones Mathematicae, vol. 173 (2008), no. 1, pp. 23121.
[8]Cluckers, R. and Loeser, F., Constructible exponential functions, motivic Fourier transform and transfer principle. Annals of Mathematics (2), vol. 171 (2010), no. 2, pp. 10111065.
[9]Denef, J., The rationality of the Poincaré series associated to the p-adic points on a variety. Inventiones Mathematicae, vol. 77 (1984), no. 1, pp. 123.
[10]Gordon, J. and Yaffe, Y., An overview of arithmetic motivic integration, Ottawa Lectures on Admissible Representations of Reductive p-adic Groups (Cunningham, C. and Nevins, M., editors), Fields Institute Monographs, vol. 26, American Mathematical Society, Providence, RI, 2009, pp. 113149.
[11]Heifetz, D. B., p-adic oscillatory integrals and wave front sets. Pacific Journal of Mathematics, vol. 116 (1985), no. 2, pp. 285305.
[12]Hörmander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Grundlehren der mathematischen Wissenschaften, vol. 256, Springer-Verlag, Berlin, 1983.
[13]Hrushovski, E. and Kazhdan, D., Integration in valued fields, Algebraic Geometry and Number Theory (Ginzburg, V., editor), Progress in Mathematics, vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261405.
[14]Igusa, J.-I., An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000.
[15]Kontsevich, M., Lecture at Orsay (Décembre 7, 1995).
[16]Pas, J., Uniform p-adic cell decomposition and local zeta functions. Journal für die Reine und Angewandte Mathematik, vol. 399 (1989), pp. 137172.
[17]Presburger, M. and Jabcquette, D., On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. History and Philosophy of Logic, vol. 12 (1991), no. 2, pp. 225233.
[18]Cluckers, R., Halupczok, I., Loeser, F., and Raibaut, M., Distributions and wave front sets in the uniform non-arhimedean setting. Transaction of the London Mathematical Society, vol. 5 (2018), no. 1, pp. 97131.
[19]Raibaut, M., Motivic wave front sets, arXiv:1810.10567.
[20]van den Dries, L., Dimension of definable sets, algebraic boundedness and Henselian fields. Annals of Pure and Applied Logic, vol. 45 (1989), no. 2, pp. 189209. Stability in model theory, II (Trento, 1987).

Keywords

ON THE COMMUTATIVITY OF PULL-BACK AND PUSH-FORWARD FUNCTORS ON MOTIVIC CONSTRUCTIBLE FUNCTIONS

  • JORGE CELY (a1) and MICHEL RAIBAUT (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed