Skip to main content Accessibility help
×
Home

NUMBER SYSTEMS WITH SIMPLICITY HIERARCHIES: A GENERALIZATION OF CONWAY’S THEORY OF SURREAL NUMBERS II

  • PHILIP EHRLICH (a1) and ELLIOT KAPLAN (a2)

Abstract

In [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$ , i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$ . In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf{No}}$ that are themselves initial. It is further shown that an initial subdomain of ${\bf{No}}$ is discrete if and only if it is a subdomain of ${\bf{No}}$ ’s canonical integer part ${\bf{Oz}}$ of omnific integers. Finally, making use of class models the results of [16] are extended by showing that the theories of nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups and initial subfields of ${\bf{No}}$ .

Copyright

References

Hide All
[1]Aschenbrenner, M., van den Dries, L., and van der Hoeven, J., The surreal numbers as a universal H-field. Journal of the European Mathematical Society, forthcoming.
[2]Alling, N., Foundations of Analysis Over Surreal Number Fields, North-Holland, Amsterdam, 1987.
[3]Alling, N. and Ehrlich, P., Sections 4.02 and 4.03 of [2].
[4]Alling, N. and Ehrlich, P., An Alternative Construction of Conway’s Surreal Numbers, Comptes rendus mathématiques – Mathematical Reports. Academy of Science, Canada, vol. 8 (1986), pp. 241246.
[5]Alling, N. and Kuhlmann, S., On ${\eta _\alpha }$-groups and fields. Order, vol. 11 (1994), pp. 8592.
[6]Berarducci, A. and Mantova, V., Surreal numbers, derivations and transseries. Journal of the European Mathematical Society, forthcoming.
[7]Boughattas, S., Résultats optimaux sur l’existence d’une partie entière dans les corps ordonnés, this Journal, vol. 58 (1993), pp. 326333.
[8]Cherlin, G. and Dickmann, M., Real Closed Rings II. Model Theory. Annals of Pure and Applied Logic, vol. 25 (1983), pp. 213231.
[9]Chang, C. C. and Keisler, H. J., Model Theory, third ed., North-Holland, Amsterdam, New York, 1990; reprinted Dover Publications, Inc., Mineola, New York, 2012.
[10]Conway, J. H., On Numbers and Games, Academic Press, London, 1976; Second Edition, A K Peters, Ltd., Natick, MA, 2001.
[11]van den Dries, L. and Ehrlich, P., Fields of Surreal Numbers and Exponentiation. Fundamenta Mathematicae, vol. 167 (2001), pp. 173188; erratum, ibid. 168(2001), pp. 295–297.
[12]Ehrlich, P., An Alternative Construction of Conway’s Ordered Field No. Algebra Universalis, vol. 25 (1988), pp. 716; errata, ibid. 25(1988), p. 233.
[13]Ehrlich, P., Absolutely Saturated Models, Fundamenta Mathematicae, vol. 133 (1989), pp. 3946.
[14]Ehrlich, P., Universally Extending Arithmetic Continua,Le Labyrinthe du Continu, Colloque de Cerisy (Sinaceur, H. and Salanskis, J.-M., editors), Springer-Verlag, France, Paris, 1992, pp. 168177.
[15]Ehrlich, P., All Number Great and Small, Real Numbers, Generalizations of the Reals, and Theories of Continua (Ehrlich, P., editor), Kluwer Academic Publishers, Dordrecht, Netherlands, 1994, pp. 239258.
[16]Ehrlich, P., Number Systems with Simplicity Hierarchies: A Generalization of Conway’s Theory of Surreal Numbers, this Journal, vol. 66 (2001), pp. 1231–1258.
[17]Ehrlich, P., Surreal Numbers: An Alternative Construction (Abstract). Bulletin of Symbolic Logic, vol. 8 (2002), p. 448.
[18]Ehrlich, P., Corrigendum to “Number Systems with Simplicity Hierarchies: A Generalization of Conway’s Theory of Surreal Numbers”, this Journal, vol. 70 (2005), p. 1022.
[19]Ehrlich, P., Conway Names, the Simplicity Hierarchy and the Surreal Number Tree. Journal of Logic and Analysis, vol. 3 (2011), no. 1, pp. 126.
[20]Ehrlich, P., The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic, vol. 18 (2012), pp. 145.
[21]Gonshor, H., An Introduction to the Theory of Surreal Numbers, Cambridge University Press, Cambridge, 1986.
[22]Hahn, H., Über die nichtarchimedischen Grössensysteme, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch-Naturwissenschaftliche Klasse 116 (Abteilung IIa), 1907, pp. 601655.
[23]Kuhlmann, S. and Matusinski, M.. The Exponential-Logarithmic Equivalence Classes of Surreal Numbers. Order, vol. 32 (2015), pp. 5368.
[24]Mendelson, E., An Introduction to Mathematical Logic, fifth ed., CRC Press, Boca Raton, 2010.
[25]Schleicher, D. and Stoll, M., An introduction to Conway’s games and numbers. Moscow Mathematical Journal, vol. 6 (2006), pp. 359–358.

Keywords

NUMBER SYSTEMS WITH SIMPLICITY HIERARCHIES: A GENERALIZATION OF CONWAY’S THEORY OF SURREAL NUMBERS II

  • PHILIP EHRLICH (a1) and ELLIOT KAPLAN (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed