Skip to main content Accessibility help
×
Home

Hechler reals

  • Grzegorz Łabędzki (a1) and Miroslav Repický (a2)

Abstract

We define a σ-ideal on the set of functions ωω with the property that a real xωω is a Hechler real over V if and only if x omits all Borel sets in . In fact we define a topology on ωω related to Hechler forcing such that is the family of first category sets in . We study cardinal invariants of the ideal .

Copyright

References

Hide All
[1] Balcar, B., Pelant, J. and Simon, P., The space of ultrafilters on N covered by nowhere dense sets, Fundamenta Mathematicae, vol. 110 (1980), pp. 1124.
[2] Baumgartner, J. E. and Dordal, P., Adjoining dominating functions, this Journal, vol. 50 (1985), no. 1, pp. 94101.
[3] Brendle, J., Judah, H. and Shelah, S., Combinatorial properties of Hechler forcing, Annals of Pure and Applied Logic, vol. 59 (1992), pp. 185199.
[4] Comfort, W. and Negrepontis, S., Theory of ultrafilters, Springer-Verlag, Berlin, 1974.
[5] Van Douwen, E. K., The integers and topology, The handbook of set-theoretic topology (Kunen, K. and Vaughan, J., editors), North-Holland, Amsterdam, 1984, pp. 111167.
[6] Fremlin, D. H., Cichoń's diagram, Publications Mathématiques de l'Université Pierre et Marie Curie, vol. 66, 23eme année, 1983/1984, No. 5 (1984), 13pp.
[7] Fremlin, D. H., Consequences of Martin's axiom, Cambridge University Press, Cambridge, 1984.
[8] Haworth, R. C. and McCoy, R. A., Baire spaces, Dissertationes Mathematicae/Rozprawy Matematyczne, vol. 141 (1977).
[9] Jech, T., Set theory, Academic Press, New York, 1978.
[10] Judah, H. and Repický, M., Amoeba reals, preprint.
[11] Miller, A. W., Some properties of measure and category, Transactions of the American Mathematical Society, vol. 266 (1981), pp. 93114.
[12] Truss, J., Sets having caliber ℵ1, Logic Colloquium ’76, North-Holland, Amsterdam, 1977, pp. 595612.

Keywords

Hechler reals

  • Grzegorz Łabędzki (a1) and Miroslav Repický (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed