Avigad, J., An effective proof that open sets are Ramsey. Archive for Mathematical Logic, vol. 37 (1998), pp. 235–240.
Blass, A., Hirst, J. L., and Simpson, S. G., Logical analysis of some theorems of combinatorics and topological dynamics, Logic and Combinatorics (Arcata, California, 1985) (Simpson, S. G., editor), Contemporary Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1987, pp. 125–156.
Bergelson, V. and Hindman, N., Additive and multiplicative Ramsey theorems in N–some elementary results. Combinatorics, Probability and Computing, vol. 2 (1993), pp. 221–241.
Bergelson, V. and Hindman, N., Ultrafilters and multidimensional Ramsey theorems. Combinatorica, vol. 9 (1989), pp. 1–7.
Enayat, A., From bounded arithmetic to second order arithmetic via automorphisms, Logic in Tehran (Enayat, A., Kalantari, I., and Moniri, M., editors), Lecture Notes in Logic, vol. 26, Association for Symbolic Logic, La Jolla, CA, 2006, 87–113.
Hindman, N., The existence of certain ultrafilters on ℕ and a conjecture of Graham and Rothschild. Proceedings of the American Mathematical Society, vol. 36 (1972), pp. 341–346.
Hindman, N., Algebra in the Stone-Čech compactification and its applications to Ramsey theory. Scientiae Mathematicae Japonicae, vol. 62 (2005), pp. 321–329.
Hindman, N. and Strauss, D., Algebra in the Stone-Čech Compactification, Theory and Applications, second ed., De Gruyter, Berlin, Boston, 2012.
Hirschfeldt, D., Slicing the Truth: On the Computable and Reverse Mathematics of Combinatorial Principles (Chong, C., Feng, Q., Slaman, T. A., Woodin, W. H., and Yang, Y., editors), World Scientific, Singapore, 2014.
Hirst, J. L., Hindman’s theorem, ultrafilters, and reverse mathematics, this Journal, vol. 69 (2004), pp. 65–72.
Kirby, L. A. S., Ultrafilters and types on models of arithmetic. Annals of Pure and Applied Mathematics, vol. 27 (1984), pp. 215–252.
Kreuzer, A., Non-principal ultrafilters, program extractions and higher order reverse mathematics. Journal of Mathematical Logic, vol. 12 (2012), 1250002 (16 pp.).
Kreuzer, A., On idempotent ultrafilters in higher-order reverse mathematics, this Journal, vol. 80 (2015a), pp. 179–193.
Kreuzer, A., Minimal idempotent ultrafilters and the Auslander-Ellis theorem, preprint, 2015b, arXiv:1305.6530.
McAloon, K., Paris-Harrington incompleteness and progressions of theories, Recursion Theory (Ithaca, N.Y., 1982) (Nerode, A. and Shore, R. A., editors), Proceedings of Symposia in Pure Mathematics, vol. 42, American Mathematical Society, Providence, RI, 1985, pp. 447–460.
Simpson, S. G., Subsystems of Second Order Arithmetic, second ed., Perspectives in Logic, Association for Symbolic Logic and Cambridge University Press, New York, 2009.
Todorcevic, S., Introduction to Ramsey Spaces, Annals of Mathematical Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010.
Towsner, H., A combinatorial proof of the dense Hindman’s theorem. Discrete Mathematics vol. 311 (2011a), pp. 1380–1384.
Towsner, H., Hindman’s theorem: An ultrafilter argument in second order arithmetic, this Journal, vol. 76 (2011b), pp. 353–360.
Towsner, H., Ultrafilters in reverse mathematics. Journal of Mathematical Logic, vol. 14 (2014), 145001 (11 pp.).
Wang, H., Popular Lectures on Mathematical Logic, Revised reprint of the 1981 second ed., Dover Publications, Inc., New York, 1993.