Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T03:15:52.623Z Has data issue: false hasContentIssue false

Electron cyclotron echoes from plasma

Published online by Cambridge University Press:  13 March 2009

R. L. Bruce
Affiliation:
Institute for Plasma Research, Stanford University

Abstract

The observed response of a low-density magnetoplasma column to a pair of RF pulses near the cyclotron frequency is a series of pulses known as two-pulse echoes. A similar three-pulse echo train may be obtained by applying a third pulse. This behaviour involves some type of non-linearity, and for a low-density plasma the most promising mechanism appears to be velocity-dependent electron-neutral collisions. This gives velocity-dependent decay to induced currents, and velocity-dependent diffusion. The latter may be important in three-pulse echo formation. In this paper computations from these theories are compared with experimental data with these findings: (1) diffusion is not primarily responsible for three-pulse echoes; (2) the predictions of the collisional current decay theory are in reasonable agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bader, L. O., Blum, F. A. & Gould, R. W. 1968 Phys. Rev. Letters 20, 435.Google Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. New York: Wiley.Google Scholar
Bracewell, R. N. 1965 The Fourier Transform and Its Application. New York: McGraw-Hill.Google Scholar
Bruce, R. L., Crawford, F. W. & Harp, R. S. 1968 a J. Appl. Phys. 39, 2088.CrossRefGoogle Scholar
Bruce, R. L., Crawford, F. W. & Harp, R. S. 1968 b J. Appl. Phys. 39, 3349.CrossRefGoogle Scholar
Crawford, F. W. & Harp, R. S. 1966 a Phys. Rev. Letters 21, 292.CrossRefGoogle Scholar
Crawford, F. W. & Harp, R. S. 1966 b J. Appl. Phys. 37, 4405.CrossRefGoogle Scholar
Crawford, F. W., Harp, R. S. & Ikegami, H. 1966 Proc. 6th Int. Conf. on Microwave and Optical Generation and Amplification, Cambridge, England. Conf. Publ. 27. p. 507. London: I.E.E.Google Scholar
Frost, L. S. & Phelps, A.V. 1964 Phys. Rev. A 136, 1538.CrossRefGoogle Scholar
Gould, R. W. 1965 a Phys. Letters 19, 477.CrossRefGoogle Scholar
Gould, R. W. 1965 b CALTEC, Rept. 28.Google Scholar
Gould, R. W. & Blum, F. A. 1967 Proc. 8th Int. Conf. on Phenomena in Ionized Gases, Vienna (p. 405). Springer.Google Scholar
Harp, R. S. & Moser, R. M. 1967 Rev. Sci. Instr. 38, 1795.CrossRefGoogle Scholar
Harp, R. S. & Smith, R. R. 1969 Bull. Am. Phys. Soc. 14, 1008.Google Scholar
Harp, R. S., Bruce, R. L. & Crawford, F. W. 1967 J. Appl. Phys. 38, 3385.CrossRefGoogle Scholar
Herrmann, G. F. & Whither, R. F. 1966 Phys. Rev. 143, 122.CrossRefGoogle Scholar
herrmamn, G. F., Hill, R. M. & kaplan, D. E. 1967 Phys. Rev. 156, 118.CrossRefGoogle Scholar
Hill, R. M. & Kaplan, D. E. 1965 Phys. Rev. Letters 14, 1062.CrossRefGoogle Scholar
Kaplan, D. E., Hill, R. M. & Wong, A. Y. 1966 Phys. Letters 22, 585.CrossRefGoogle Scholar
Kegal, W. H. 1967 Plasma Phys. 9, 23.CrossRefGoogle Scholar
Kegal, W. H. & Gould, R. W. 1965 Phys. Letters 19, 531.CrossRefGoogle Scholar
Smith, T. B. 1967 MIT, Research Laboratory of Electronics, Tech. Rep. 458.Google Scholar
Spitzer, L. 1962 Physics of Fully-Ionized Gases, 2nd edn.Interscienco.Google Scholar
Wono, A. Y. & Judd, G. 1967 Proc. Conf. on Physics of Quiescent Plasmas, Frascati, Rome, p. 317.Google Scholar