Skip to main content Accessibility help
×
Home

Tubular compression fossils from the Ediacaran Nama group, Namibia

  • P. A. Cohen (a1), A. Bradley (a2), A. H. Knoll (a2), J. P. Grotzinger (a3), S. Jensen (a4), J. Abelson (a5), K. Hand (a6), G. Love (a7), J. Metz (a3), N. McLoughlin (a8), P. Meister (a9), R. Shepard (a10), M. Tice (a11) and J. P. Wilson (a1)...

Abstract

Abundant tubular macrofossils occur in finely laminated siltstones and shales of the 548–542 Ma Schwarzrand Subgroup, Nama Group, Namibia. The Nama tubes occur in both the Vingerbreek and Feldschuhhorn members commonly in dense populations and always in fine-grained, lower shore-face lithologies deposited below fair-weather wave base. The tubes are preserved mostly as compressed casts and molds that range in width from 0.6 to 2.1 mm; apparently incomplete specimens reach lengths up to 10 cm. All specimens show sinuous bending and occasional brittle fracture, indicating an original construction of strong but flexible organic matter. Feldschuhhorn specimens preserve fine longitudinal pleats or folds that record pliant organic walls, but the older Vingerbreek populations do not. Similarly, some specimens in the Feldschuhhorn Member display branching, while Vingerbreek tubes do not. The abundant Feldschuhhorn tubes are assigned to the widespread Ediacaran problematicum Vendotaenia antiqua; however, the distinctive Vingerbreek population remains in open nomenclature. The most abundant fossils in Nama rocks, these tubes resemble populations in Ediacaran successions from Russia, China, Spain, and elsewhere. Beyond their local importance, then, such tubes may turn out to be the most abundant record of Ediacaran life.

Copyright

References

Hide All
Anbar, A. D. and Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science, 297:11371142.
Babcock, L. E., Grunow, A. M., Sadowski, G. R., and Leslie, S. A. 2005. Corumbella, an Ediacaran-grade organism from the late Neoproterozoic of Brazil. Palaeogeography, Palaeogeography, Palaeoecology, 220:718.
Bradley, A. S. 1998. A New Vendian Body Fossil from the Nama Group of Namibia: Evolutionary and Biostratigraphic Implications. Unpublished B.A. thesis, Harvard College, 60 p.
Brock, F., Parkes, R. J., and Briggs, D. E. G. 2006. Experimental pyrite formation associated with decay of plant material. Palaios, 21:499506.
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26:386404.
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.
Canfield, D. E. and Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382:127132.
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.
Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T., and Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep water chemistry. Science, 321:949952.
Chizhov, A. O., Dell, A., Morris, H. R., Haslam, S. M., Mcdowell, R. A., and Shashkov, A. S. 1999. A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research, 320:108119.
Contreras Sánchez, M., Martí Mus, M., and Jensen, S. R. 2007. Filamentous carbonaceous compressions from the terminal Ediacaran–Cambrian of central Spain. Palaeontological Association Newsletter, 66, p. 68.
Contreras Sánchez, M. M., Jensen, S. R., and Palacios, T. 2006. Sabelidítidos y vendoténidos del Anticlinal de Ibor (Zona Centroibérica). XXII Jornadas de la Sociedad Española de Paleontología. Libro de Resúmenes, 101103.
Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y. 2008. Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 138161.
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2005. Ediacaran trace fossils: true and false. In Briggs, D. E. (ed.), Evolving Form and Function: Fossils and Development. Peabody Museum of Natural History, New Haven, pp. 125138.
Eberl, D. D. 1984. Clay mineral formation and transformation in rocks and soils; clay minerals eir structure, behaviour and use. Philosophical Transactions of the Royal Society, London, Series A: Mathematical and Physical Sciences, 311:241257.
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E. 2006. Oxidation of the Ediacaran ocean. Nature, 444:744747.
Germs, G. J. B. 1972. New shelly fossils from Nama group, South West Africa. American Journal of Science, 272:752761.
Germs, G. J. B., Knoll, A. H., and Vidal, G. 1986. Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa). Precambrian Research, 32:4562.
Gnilovskaya, M. B. 1971. The oldest aquatic plants of the Vendian of the Russian Platform (late Precambrian). Paleontological Journal, 5:372378.
Gnilovskaya, M. B. 1983. Vendotaenides. In Urbanek, A. and Rozanov, A. Yu. (eds.), Upper Precambrian and Cambrian Paleontology of the East European Platform. Publishing House Wydawnictwa Geologiczne: Warsaw, Poland, p. 4656.
Gnilovskaya, M. B. 1990. Vendotaenids; Vendian metaphytes. In Sokolov, B. S. & Iwanowski, A. B. (eds.), The Vendian System. Volume 1. Paleontology. Springer-Verlag: New York, NY, p. 138147.
Gnilovskaya, M. B., Istchenko, A. A., Kolshnikov, Ch. M., KoRenchuk, L. V., and Udalstov, A. P. 1988. Vendotaenids of the East European Platform. Leningrad: Nauka, 143 p.
Graham, L. E. and Wilcox, L. E. 1999. Algae. Upper Saddler River, NJ: Prentice Hall, 604 p.
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic; Proterozoic evolution and environments. American Journal of Science, 290-A:261294.
Grazhdankin, D. and Nagovitsin, K. 2007. Late Vendian Miaohe–type ecological assemblage of the East European Platform. Doklady Earth Sciences, 417:11831187.
Gresse, P. G. and Germs, G. J. B. 1993. The Nama foreland basin; sedimentation, major unconformity bounded sequences and multisided active margin advance. Precambrian Research, 63:247272.
Grotzinger, J. P. 2002. Stratigraphy, facies, and paleoenvironmental setting of a terminal Proterozoic carbonate ramp, Nama Group (ca. 550–543 Ma), Namibia: Johannesburg, South Africa, 16th International Sedimentological Congress, Field Guide, 71 p.
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite–stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.
Grotzinger, J. P. and Miller, R. McG. 2008. Nama Group. In Miller, R. McG. (ed.), The Geology of Namibia, Volume 2, Geological Survey of Namibia, p. 13.22913.272.
Herman, T. N. and Podkovyrov, V. N. 2005. On the animal nature of the late Riphean Rugosoopsis. Paleontological Journal, 39:582589.
Hofmann, H. J. 1992. Proterozoic and selected Cambrian mega-scopic dubiofossils and pseudofossils. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge, p. 10351053.
Hofmann, H. J. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In Bengston, S. (ed.), Early Life on Earth. Columbia University Press, New York, pp. 342357.
Hou, X.-G., Aldridge, R. J., Bergstrom, J., Siveter, D. L., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Publishing, Malden Massachusetts, 233 p.
Hua, H., Chen, Z., and Yuan, X. 2007. The advent of mineralized skeletons in Neoproterozoic metazoa; new fossil evidence from the Gaojiashan fauna. Geological Journal, 42:263279.
Ivantsov, A. Y. 1990. New data on the ultrastructure of sabellidites (Pogonophora?). Paleontologicheskii Zhurnal, 24:125128.
Jensen, S., Droser, M. L., and Gehling, J. G. 2005a. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeocology, 220:1929.
Jensen, S., Palacios, T., and Marti Mus, M. 2005b. Megascopic filamentous organisms preserved as grooves and ridges in Ediacaran siliciclastics. Paleobios, 25, Suppl. to No. 2, 6566.
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record. In Xiao, S. & Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology, p. 115157. Springer.
Jensen, S., Palacios, T., and Marti Mus, M. 2007. A brief review of the fossil record of the Ediacaran–Cambrian transition in the area of Montes de Toledo–Guadalupe, Spain. In Vickers-Rich, P. (ed.), The rise and fall of the Ediacaran biota. Geological Society of London Special Publication, 286: 223235.
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans, Philosophical Transactions of the Royal Society, London. Biological Sciences, 361:10231038.
Knoll, A. H., Summons, R. E., Waldbauer, J., and Zumberge, J. 2007. The geological succession of primary producers in the oceans. In Falkowski, P. and Knoll, A. H. (eds.), The Evolution of Primary Producers in the Sea. Burlington, Elsevier, p. 133163.
Korkutis, V. 1981. Late Precambrian and Early Cambrian in the East European Platform. Precambrian Research, 15:7594.
Liu, R., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51: 339366.
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia; implications for metazoan evolution. Science, 288:841845.
Mcfadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, USA 105:31973202.
Moczydlowksa, M. 2003. Earliest Cambrian putative bacterial nanofossils. Memoirs of the Association of Australasian Palaeontologists, 29:111.
Narbonne, G. M. 2005. The Ediacaran Biota: Neoproterozoic origin of animals and their Ecosystems. Annual Review of Earth and Planetary Sciences, 33:412442.
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post–Cambrian closure of the deep-water slope–basin taphonomic window. Geology, 31:769772.
Raiswell, R. and Canfield, D. E. 1998. Sources of iron for pyrite formation in marine Sediments. American Journal of Science, 298:219245.
Saylor, B. Z. 2003. Sequence stratigraphy and carbonate–siliciclastic mixing in a terminal Proterozoic foreland basin, Urusis Formation, Nama Group, Namibia. Journal of Sedimentary Research, 73:264279.
Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand subgroups (Nama Group), Southwestern Namibia; Neoproterozoic stratigraphy and earth history. Precambrian Research, 73:153171.
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research, 68:12231235.
Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Mariné, M. H., Teske, A., and Jørgensen, B. B. 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 284:493495.
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456458.
Shen, Y., Zhang, T., and Hoffman, P. F. 2008. On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of Sciences, 105:73767381.
Sokolov, B. S. 1967. The oldest Pogonophora. Doklady Akademia Nauk SSSR 177(1):201204.
Sokolov, B. S. 1968. Vendian and Early Cambrian Sabelliditida (Pogonophora) of the USSR. Proceedings, 23rd International Geological Congress, Prague, pp. 7996.
Sokolov, B. S. 1972. Vendian and Early Cambrian Sabellidita (Pogonophora) of the USSR. Proceedings of the 23rd International Geological Congress, Proceedings of the International Palaeontological Union, 7986.
Steiner, M. 1994. Die neoproterozoischen Megaalgen Sudchinas. Berliners Geowissenschaftliche Abhandlungen, Reihe E, Band 15,146 p.
Tang, F., Yin, C., Bengston, S., Liu, P., Wang, Z., and Gao, L. 2008. Octoradiate spiral organisms in the Ediacaran of South China. Acta Geological Sinica, 82:2734.
Vidal, G. 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia 22:375379.
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.
Xiao, S. 2004. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 78:393401.
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.
Xiao, S. and Dong, L. 2006. On the morphological and ecological history of Proterozoic macroalgae, In Xiao, S. and Kaufmann, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Dordrecht, the Netherlands, Springer, p. 5790.
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale; a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:347376.
Yuan, X., Li, J., and Cao, R. 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 32:143155.
Zhu, M., Babcock, L. E., and Steiner, M. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China); testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeocology, 220:3146.

Tubular compression fossils from the Ediacaran Nama group, Namibia

  • P. A. Cohen (a1), A. Bradley (a2), A. H. Knoll (a2), J. P. Grotzinger (a3), S. Jensen (a4), J. Abelson (a5), K. Hand (a6), G. Love (a7), J. Metz (a3), N. McLoughlin (a8), P. Meister (a9), R. Shepard (a10), M. Tice (a11) and J. P. Wilson (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed