Skip to main content Accessibility help

Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona

  • Susannah M. Porter (a1) and Leigh Anne Riedman (a1) (a2)


The ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona, provides an exceptional record of life during the diversification of crown-group eukaryotes, just prior to the first Cryogenian glaciation. We document in detail the assemblage of organic-walled microfossils preserved in fine-grained siliciclastics throughout the unit. In contrast with earlier studies, we primarily used SEM to document fossil morphologies, augmented by transmitted light microscopy, FIB-SEM, and TEM. This resulted in the discovery of new species and the recognition of broad-ranging, intraspecific biological and taphonomic variation in other species. Twenty-two species and five unnamed morphotypes are described, including three new species: Kaibabia gemmulella, Microlepidopalla mira, and Volleyballia dehlerae; two new combinations: Galerosphaera walcottii and Lanulatisphaera laufeldii; and 17 previously described forms. The possible colonial green alga Palaeastrum dyptocranum Butterfield in Butterfield, Knoll, and Swett, 1994 and the index fossil Cerebrosphaera globosa (Ogurtsova and Sergeev, 1989) Sergeev and Schopf, 2010 (=C. buickii Butterfield, 1994) are described for the first time from Chuar rocks. Lanulatisphaera laufeldii, a locally abundant and globally widespread species characterized by submicrometer filamentous processes that form a reticulate network, may be a useful marker for the time interval just before the appearance of vase-shaped microfossils (VSMs) ca. 740 Ma.

Organic-walled microfossil assemblages decline in diversity upsection, coincident with the appearance of VSMs and intermittent euxinia within the basin. Whether this pattern is due to preservational bias related to greater water depth or the higher TOC of upper Chuar rocks or instead reflects biotic turnover related to the spread of euxinic water masses in the basin is unknown.



Hide All
Adl, S.M., et al., 2012, The revised classification of eukaryotes: Journal of Eukaryotic Microbiology, v. 59, p. 429493.
Agić, H., Moczydłowska, M., and Yin, L.-M., 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.
Arouri, K.R., Greenwood, P.F., and Walter, M.R., 2000, Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterisation: Organic Geochemistry, v. 31, p. 7589.
Bartley, J.K., 1996, Actualistic taphonomy of Cyanobacteria: Implications for the Precambrian fossil record: Palaios, v. 11, p. 571586.
Battison, L., and Brasier, M.D., 2012, Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland: Precambrian Research, v. 196–197, p. 204217.
Bernhard, J.M., Buck, K.R., Farmer, M.A., and Bowser, S.S., 2000, The Santa Barbara Basin is a symbiosis oasis: Nature, v. 403, p. 7780.
Bloeser, B., 1985, Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona: Journal of Paleontology, v. 59, p. 741765.
Bloeser, B., Schopf, J.W., Horodyski, R.J., and Breed, W.J., 1977, Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona: Science, v. 195, p. 676679.
Brocks, J.J., Jarrett, A., Sirantoine, E., Kenig, F., Moczydłowska, M., Porter, S.M., and Hope, J., 2016, Early sponges and toxic protists: Possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth: Geobiology, v. 14, p. 129149 doi:10.1111/gbi.12165.
Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M., and Hegewald, E., 2005, Phylogeny of the Hydrodictyaceae (Chlorophyceae): Inferences from rDNA data: Journal of Phycology, v. 41, p. 10391054.
Budd, G.E., and Jensen, S., 2000, A critical reappraisal of the fossil record of the bilaterian phyla: Biological Reviews, v. 75, p. 253295.
Butterfield, N.J., 1990, Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale: Paleobiology, p. 272286.
Butterfield, N.J., 2009, Modes of pre-Ediacaran multicellularity: Precambrian Research, v. 173, p. 201211.
Butterfield, N.J., 2015, Early evolution of the Eukaryota: Palaeontology, v. 58, p. 517.
Butterfield, N.J., and Chandler, F.W., 1992, Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island: Palaeontology, v. 35, p. 943957.
Butterfield, N.J., Knoll, A.H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, p. 184.
Cohen, P.A., and Knoll, A.H., 2012, Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory: Journal of Paleontology, v. 86, p. 775800.
Colbath, G.K., and Grenfell, H.R., 1995, Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”): Review of Palaeobotany and Palynology, v. 86, p. 287314.
Combaz, A., Lange, F.W., and Pansart, J., 1967, Les “Leiofusidae” Eisenack, 1938: Review of Palaeobotany and Palynology, v. 167, p. 291307.
Cotter, K.L., 1999, Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia: Alcheringa, v. 23, p. 6386.
Couëffé, R., and Vecoli, M., 2011, New sedimentological and biostratigraphic data in the Kwahu Group (Meso- to Neo-Proterozoic), southern margin of the Volta Basin, Ghana: Stratigraphic constraints and implications on regional lithostratigraphic correlations: Precambrian Research, v. 189, p. 155175.
Dahl, T.W., Canfield, D.E., Rosing, M.T., Frei, R.E., Gordon, G.W., Knoll, A.H., and Anbar, A.D., 2011, Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans: Earth and Planetary Science Letters, v. 311, p. 264274.
Deason, T.R., Silva, P.C., Watanabe, S., and Floyd, G.L., 1991, Taxonomic status of the species of the green algal genus Neochloris : Plant Systematics and Evolution, v. 177, p. 213219.
Dehler, C.M., 2014, Advances in Neoproterozoic biostratigraphy spark new correlations and insight in evolution of life: Geology, v. 42, p. 731732.
Dehler, C.M., Prave, A.R., Crossey, L.J., Karlstrom, K.E., Atudorei, V., and Porter, S.M., 2001a, Linking mid-Neoproterozoic successions in the western U.S.: The Chuar Group-Uinta Mountain Group-Pahrump Group connection (ChUMP): Geological Society of America Abstracts with Programs, v. 33, p. 20.
Dehler, C.M., Elrick, M.E., Karlstrom, K.E., Smith, G.A., Crossey, L.J., and Timmons, M.J., 2001b, Neoproterozoic Chuar Group (~800–742 Ma), Grand Canyon: A record of cyclic marine deposition during global climatic and tectonic transitions: Sedimentary Geology, v. 141–142, p. 465499.
Dehler, C., Elrick, M., Bloch, J., Crossey, L., Karlstrom, K., and Des Marais, D.J., 2005, High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742), Grand Canyon: Implications for mid-Neoproterozoic climate change: Geological Society of America Bulletin, v. 117, p. 3245.
Dehler, C.M., Porter, S.M., de Grey, L.D., Sprinkel, D.A., and Brehm, A., 2007, The Neoproterozoic Uinta Mountain Group revisited: A synthesis of recent work on the Red Pine Shale and undivided clastic strata, northeastern Utah, U.S.A., in Link, P.K., and Lewis, R., eds., Proterozoic Geology of Western North American and Siberia: SEPM Special Publication, v. 86, p. 151166.
Dehler, C.M., Porter, S.M., and Timmons, J.M., 2012, The Neoproterozoic Earth system revealed from the Chuar Group of Grand Canyon, in Timmons, J.M., and Karlstrom, K.E., eds., Grand Canyon Geology: Two Billion Years of Earth’s History: Geological Society of America Special Paper 489, p. 4972.
Dehler, C.M., Gehrels, G., Porter, S.M., Cox, G., Heizler, M.T., Karlstrom, K.E., and Crossey, L.J., 2014, ChUMP (Chuar-Uinta Mountain-Pahrump) strata of the western U.S. record Cretaceous-like ocean anoxia events (OAEs) before Snowball Earth: Geological Society of America Abstracts with Programs, v. 46, p. 627.
Dodge, J.D., 1989, Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study: Botanica Marina, v. 32, p. 275298.
Downie, C., 1963, ‘Hystrichospheres’ (acritarchs) and spores of the Wenlock Shales (Silurian) of Wenlock, England: Palaeontology, v. 6, p. 625652.
Eisenack, A, 1938, Neue Mikrofossilien des baltischen Silurs. IV.: Palaeontologisch Zeitschrift, v. 19(no. 3–4), p. 217243. pl. 15–16.
Eisenack, A., 1955, Chitinozoen, Hystrichosphären und andere Mikrofossilien aus dem Beyrichia-Kalk: Senckenbergiana lethaea, v. 36, p. 157188.
Eisenack, A., 1958a, Mikrofossilien aus dem Ordovizium des Baltikums: Senckenbergiana lethaea, v. 39, p. 389405.
Eisenack, A., 1958b, Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea: Palaeontographica Abteilung A, v. 110, p. 119.
Eisenack, A., 1965, Mikrofossilien aus dem Silur Gotlands. Hystrichosphären, Problematika: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 122, p. 257274.
Eisenack, A., 1976, Mikrofossilien aus dem Vaginatenkalk von Hälludden, Öland: Palaeontographica Abteilung A, v. 154, p. 181203.
Ellegaard, M., 2000, Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark: Review of Palaeobotany and Palynology, v. 109, p. 6581.
Elston, D.P., 1989, Middle and late Proterozoic Grand Canyon Supergroup, Arizona, in Elston, D.P., Billingsley, G.H., and Young, R.A., eds., Geology of the Grand Canyon, Northern Arizona (with Colorado River Guides): Lee Ferry to Pierce Ferry, Arizona, Washington, D.C., American Geophysical Union, p. 94105.
Evitt, W.R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II: Proceedings of the National Academy of Sciences of the United States of America, v. 49, p. 298.
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M., and Hill, J.M., 1990, Acritarchs and Fossil Prasinophytes: An Index to Genera, Species and Infraspecific Taxa, Dallas, American Association of Stratigraphic Palynologists Foundation, 771, p.
Foissner, W., Müller, H., and Agatha, S., 2007, A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora): European Journal of Protistology, v. 43, p. 295314.
Ford, T.D., and Breed, W.J., 1969, Preliminary geologic report of the Chuar Group, Grand Canyon, Arizona: Four Corners Geological Society Guidebook, p. 114122.
Ford, T.D., and Breed, W.J., 1973a, Late Precambrian Chuar Group, Grand Canyon, Arizona: Geological Society of America Bulletin, v. 84, p. 12431260.
Ford, T.D., and Breed, W.J., 1973b, The problematical fossil Chuaria : Palaeontology, v. 16, p. 535550.
Gao, L., Xing, Y., and Liu, G., 1995, Neoproterozoic micropalaeoflora from Hunjiang area, Jilin Province and its sedimentary environment: Professional Papers of Stratigraphy and Palaeontology, v. 26, p. 127.
Golubic, S., and Campbell, S.E., 1979, Analogous microbial forms in recent subaerial habitats and in Precambrian cherts: Gloethece coerulea Geitler and Eosynechococcus moorei Hofmann: Precambrian Research, v. 8, p. 201217.
Graham, L.E., and Wilcox, L.W., 2000, Algae, Upper Saddle River, NJ, Prentice-Hall, 640 p.
Grey, K., 1999, A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-insoluble microfossils: Western Australia Geological Survey, Record 1999/10, 23 p.
Grey, K., and Willman, S., 2009, Taphonomy of Ediacaran acritarchs from Australia: Significance for taxonomy and biostratigraphy: Palaios, v. 24, p. 239256.
Grey, K., Hill, A.C., and Calver, C., 2011, Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in a global context, in Arnaud, E., Halverson, G.P., and Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations: Geological Society London, Memoirs 36, p. 113134.
Hemsley, A.R., Lewis, J., and Griffiths, P.C., 2004, Soft and sticky development: Some underlying reasons for microarchitectural pattern convergence: Review of Palaeobotany and Palynology, v. 130, p. 105119.
Hermann, T.N., 1974, Nakhodki massovykh skoplenii trikhomov v rifee [Findings of mass accumulations of trichomes in the Riphean], in Timofeev, B.V., ed., Mikrofitofossilii Proterozoia i rannego Paleozoia SSSR [Microfossils of the Proterozoic and early Paleozoic, USSR], Leningrad, Nauka, p. 610 [in Russian].
Hill, A.C., Cotter, K.L., and Grey, K., 2000, Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia: Precambrian Research, v. 100, p. 281298.
Hofmann, H.J., 1976, Precambrian microflora, Belcher Islands, Canada: Significance and systematics: Journal of Paleontology, v. 50, p. 10401073.
Hofmann, H.J., 1999, Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas): Acta Micropalaeontologica Sinica, v. 16, p. 215224.
Hofmann, H.J., and Jackson, G.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Memoir (The Paleontological Society), v. 37, p. 139.
Hughes Martiny, J.B., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., and Kuske, C.R., 2006, Microbial biogeography: Putting microorganisms on the map: Nature Reviews Microbiology, v. 4, p. 102112.
Jankauskas, T.V., 1979a, Nizhnerifeiskie mikrobioty Iuzhnogo Urala (Lower Riphean microbiotas of the southern Urals): Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 247, p. 14651467 [in Russian].
Jankauskas, T.V., 1979b, Srednerifeyski microbiota Yuzhnogo Urala i Bashkirskogo Priural’ya [Middle Riphean microbiota of the southern Urals and the Ural region in Bashkiria]: Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 248, p. 190193 [in Russian].
Jankauskas, T.V., 1980, Shisheniakskaia mikrobiota Verkhnego Rifeia Iuzhnogo Urala [Shisheniak microbiota of the upper Riphean of the Southern Urals]: Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 251, p. 190192 [in Russian].
Jankauskas, T.V., 1982, Mikrofossilii rifeiia Iuzhnogo Urala [Microfossils of the Riphean of the South Urals], in Keller, B.M., ed., Stratotip Rifeya-Paleontologiya paleomagnetizm [Riphean Stratotype: Paleontology and Paleomagnetism]: Akademiya Nauk SSSR Transactions, Volume 368, Moscow, Nauka, p. 84120. plates, p. 31–48 [in Russian].
Jankauskas, T., Mikhailova, N., and Hermann, T.N., 1989, Mikrofossilii Dokembriia SSSR [Precambrian Microfossils of the USSR], Leningrad, Nauka, 191 p. [in Russian].
Javaux, E.J., 2011, Early eukaryotes in Precambrian oceans, in Gargaud, M., Lopez-Garcia, P., and Martin, H., eds., Origins and Evolution of Life: An Astrobiology Perspective, New York, Cambridge University Press, p. 414449.
Javaux, E.J., and Marshal, C.P., 2006, A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 115.
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.
Johnston, D.T., Poulton, S.W., Dehler, C., Porter, S., Husson, J., Canfield, D.E., and Knoll, A.H., 2010, An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA: Earth and Planetary Science Letters, v. 290, p. 6473.
Karlstrom, K.E., et al. 2000, Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma: Geology, v. 28, p. 619622.
Knoll, A.H., 1984, Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard: Journal of Paleontology, v. 58, 131162.
Knoll, A.H., 1996, Archean and Proterozoic paleontology, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications, Volume 1, Dallas, American Association of Stratigraphic Palynologists Foundation, p. 5180.
Knoll, A.H., 2014, Paleobiological perspectives on early eukaryote evolution: Cold Spring Harbor Perspectives in Biology, v. 6, a016121.
Knoll, A.H., and Calder, S., 1983, Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard: Palaeontology, v. 26, p. 467496.
Knoll, A.H., and Swett, K., 1985, Micropalaeontology of the late Proterozoic Veteranen Group, Spitsbergen: Palaeontology, v. 28, p. 451473.
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society B, v. 361, p. 10231038.
Kokinos, J.P., and Anderson, D.M., 1995, Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (=L. machaerophorum): Palynology, v. 19, p. 143166.
Leander, B.S., Witek, R.P., and Farmer, M.A., 2001, Trends in the evolution of the euglenid pellicle: Evolution, v. 55, p. 22152235.
Lewis, J., and Hallett, R., 1997, Lingulodinium polyedrum (Gonyaulax polyedra) a blooming dinoflagellate, in Ansell, A.D., Gibson, R.N., and Barnes, M., eds., Oceanography and Marine Biology: An Annual Review, Volume 35, London, UCL Press, p. 97161.
Lewis, L.A., and McCourt, R.M., 2004, Green algae and the origin of land plants: American Journal of Botany, v. 91, p. 15351556.
Li, Z.-X., Evans, D.A.D., and Halverson, G.P., 2013, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland: Sedimentary Geology, v. 294, p. 219232.
Lindgren, S., 1982, Algal coenobia and leiospheres from the Upper Riphean of the Turukhansk region, eastern Siberia: Stockholm Contributions in Geology, v. 38, p. 3545.
Logares, R., Bråte, J., Bertilsson, S., Clasen, J.L., Shalchian-Tabrizi, K., and Rengefors, K., 2009, Infrequent marine–freshwater transitions in the microbial world: Trends in Microbiology, v. 17, p. 414422.
Marchant, H.J., 1977, Cell division and colony formation in the green alga Coelastrum (Chlorococcales): Journal of Phycology, v. 13, p. 102110.
McManus, H.A., and Lewis, L.A., 2011, Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex : Journal of Phycology, v. 47, p. 152163.
Mertens, K.N., et al., 2009, Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: Investigating its potential as salinity proxy: Marine Micropaleontology, v. 70, p. 5469.
Moczydłowska, M., 2010, Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs: Journal of Paleontology, v. 84, p. 216230.
Moczydłowska, M., and Willman, S., 2009, Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities: Precambrian Research, v. 173, p. 2738.
Nagovitsin, K., 2009, Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.
Nagy, R.M., and Porter, S.M., 2005, Paleontology of the Neorproterozoic Uinta Mountain Group, in Dehler, C.M., Pederson, J.L., Sprinkel, D.A., and Kowallis, B.J., eds., Uinta Mountain Geology: Utah Geological Association Publication 33, p. 4962.
Nagy, R.M., Porter, S.M., Dehler, C.M., and Shen, Y., 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.
Naumova, S.N., 1949, Spory nizhnego Kembriia [Spores of the lower Cambrian]: Izvestiia Akademii Nauka, Seriia Geologicheskaia [Bulletin of the Academy of Sciences of the USSR, Geologic Series], v. 1949, no. 4, p. 4956 [in Russian].
Naumova, S.N., 1950, Spory nizhnego Silura [Spores of the lower Silurian): Trudy Konferentsii po Sporovo-Pyltsevomu Analizu, 1948 Goda, Geografischeskii Facultet, Izdatelstvo Moskovskogo Universita [Proceedings from the Conference on Pollen Analysis, 1948], Moscow, Moscow University Press, p. 165190 [in Russian].
Ogurtsova, R.N., and Sergeev, V.N., 1989, Megasferomorfidy Chichkanskoi svity verkhnego Dokembriia iuzhnogo Kazakhstana [Megaspheromorphids from the upper Precambrian Chichkan Formation, southern Kazakhstan]: Paleontologicheskii Zhurnal [Paleontological Journal], v. 1989, no. 2, p. 119122 [in Russian].
Pang, K., Tang, Q., Schiffbauer, J.D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z., and Xiao, S., 2013, The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils: Geobiology, v. 11, p. 499510.
Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., and Norvick, M.S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia: BMR Journal of Australian Geology & Geophysics, v. 3, p. 117.
Peng, Y., Bao, H., and Yuan, X., 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, p. 223232.
Popper, Z.A., Michel, G., Hervé, C., Domozych, D.S., Willats, W.G.T., Tuohy, M.G., Kloareg, B., and Stengel, D.B., 2011, Evolution and diversity of plant cell walls: From algae to flowering plants: Annual Review of Plant Biology, v. 62, p. 567590.
Porter, S.M., 2004, The fossil record of early eukaryotic diversification: Paleontological Society Papers, v. 10, p. 3550.
Porter, S.M., and Knoll, A.H., 2000, Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.
Porter, S.M., Meisterfeld, R., and Knoll, A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.
Porter, S.M., Dehler, C.M., Moore, J.L., Riedman, L.A., and Wang, S.C., 2013, Possible scale-bearing protists in the mid-Neoproterozoic Chuar Group, Grand Canyon, and Uinta Mountain Group, Utah: Geological Society of America Abstracts with Programs, v. 45, p. 693.
Pyatiletov, V.G., 1980, O nakhodkakh mikrofossilii roda Navifusa v Lakhandinskoi Svite [On the discovery of microfossils in the genus Navifusa in the Lakhanda Formation]: Paleontologicheskii Zhurnal [Paleontological Journal], v. 1980,no. 3, p. 143145 [in Russian].
Riedman, L.A., and Porter, S.M., 2016, High morphological diversity of organic-walled microfossils from the Neoproterozoic Alinya Formation, Officer Basin, Australia: Journal of Paleontology, p. 854887.
Riedman, L.A., and Sadler, P.M., 2015, Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils: Geological Society of America Abstracts with Programs, v. 47, p. 212.
Riedman, L.A., Porter, S.M., Halverson, G.P., Hurtgen, M.T., and Junium, C.K., 2014, Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard: Geology, v. 42, p. 10111014.
Samuelsson, J., 1997, Biostratigraphy and palaeobiology of early Neoproterozoic strata of the Kola Peninsula, Northwest Russia: Norsk Geologisk Tidsskrift, v. 77, p. 165192.
Samuelsson, J., and Butterfield, N.J., 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: Stratigraphic and paleobiological implications: Precambrian Research, v. 107, p. 235251.
Samuelsson, J., Dawes, P.R., and Vidal, G., 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland: Precambrian Research, v. 96, p. 123.
Schiffbauer, J.D., and Xiao, S., 2009, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early eukaryotic organisms: Palaios, v. 24, p. 616626.
Schopf, J.W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.
Schopf, J.W., 1992, Atlas of representative Proterozoic microfossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere, Cambridge, Cambridge University Press, p. 10571117.
Schopf, J.W., Ford, T.D., and Breed, W.J., 1973, Microorganisms from the late Precambrian of the Grand Canyon, Arizona: Science, v. 179, p. 13191321.
Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., Kuznetsov, A.B., Vasil eva, I.M., Gorokhovskii, B.M., and Podkovyrov, V.N., 2000, Isotope age of the middle-upper Riphean boundary: Pb-Pb geochronology of the Lakhanda Group carbonates, eastern Siberia: Doklady Earth Science, v. 372, p. 625629.
Sergeev, V.N., 2006, Okremnennye mikrofossilii Dokembriia: Priroda, klassifikatsiia I biostratigraficheskoe znachenie [Precambrian Microfossils in Cherts: Their Paleobiology, Classification, and Biostratigraphic Usefulness], Moscow, Geos, 280 p. [in Russian].
Sergeev, V.N., and Schopf, J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p. 363401.
Shields-Zhou, G., Porter, S.M., and Halverson, G.P., 2016, A new rock-based definition for the Cryogenian Period: Episodes, v. 39, p. 38.
Simonetti, C., and Fairchild, T.R., 2000, Proterozoic microfossils from subsurface siliciclastic rocks of the São Francisco Craton, south-central Brazil: Precambrian Research, v. 103, p. 129.
Stein, F.V., 1883, Der Organismus der Infusionthiere. III. Abtheilung. II. Hälfte. Die Naturgeschichte der Arthrodelen Flagellaten, Leipzig, Wilhelm Engelmann, 81 p.
Strauss, J.V., Rooney, A.D., Macdonald, F.A., Brandon, A.D., and Knoll, A.H., 2014, 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy: Geology, v. 42, p. 659662.
Summons, R.E., Brassell, S.C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N., and Ward, D.M., 1988, Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona: Geochimica et Cosmochimica Acta, v. 52, p. 26252637.
Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z., and Wan, B., 2013, Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance: Precambrian Research, v. 236, p. 157181.
Tang, Q., Pang, K., Yuan, X., Wan, B., and Xiao, S., 2015, Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications: Precambrian Research, v. 266, p. 296318.
Timmons, J.M., Karlstrom, K.E., Dehler, C.M., Geissman, J.W., and Heizler, M.T., 2001, Proterozoic multistage (~1.1 and ~0.8 Ga) extension in the Grand Canyon Supergroup and establishment of northwest and north-south tectonic grains in the southwestern United States: Geological Society of America Bulletin, v. 113, p. 163180.
Timofeev, B.V., 1959, Drevneishaia flora Pribaltiki i ee stratigraficheskoe znachenie [Ancient flora of the Baltic states and its stratigraphic significance]: Vseoyuznyi Neftyanoi Naucho-Issledovatelskii Geologorazvedochnyi [Proceedings of the Union Petroleum Research Exploration Institute], Leningrad, VNIGRI, 129, p. 1136, pl. 1–24 [in Russian].
Timofeev, B.V., 1966, Mikropaleofitologicheskoe Issledovanie Drevnikh Svit [Micropaleophytological research into ancient strata], Moscow, Nauka [USSR Academy of Sciences], 89 pl. 126 p. [in Russian].
Timofeev, B.V., and Hermann, T.N., 1979, Dokembriiskaia mikrobiota Lakhandinskoi svity [Precambrian Microbiota of the Lakhanda Formation], in Sokolov, B.S., ed., Paleontologiia Dokembriia i Rannego Kembriia [Paleontology of the Precambrian and early Cambrian], Leningrad, Nauka, p. 137147 [in Russian].
Timofeev, B.V., Hermann, T.N., and Mikhailova, N.S., 1976, Mikrofitofossilii Dokembriia, Kembriia i Ordovika [Plant Microfossils of the Precambrian, Cambrian, and Ordovician], Leningrad, Scientific Institute of Precambrian Geology and Geochronology, 106 p. [in Russian].
Tippery, N.P., Fučiková, K., Lewis, P.O., and Lewis, L.A., 2012, Probing the monophyly of the Sphaeropleales (Chlorophyceae) using data from five genes: Journal of Phycology, v. 48, p. 14821493.
Tynni, R., and Donner, J., 1980, A microfossil and sedimentation study of the late Precambrian formation of Hailuoto, Finland: Geological Survey of Finland, Bulletin 311, 27 p, 8 pl.
Tynni, R., and Uutela, A., 1984, Microfossils from the Precambrian Muhos Formation in Western Finland: Geological Survey of Finland, Bulletin 330, 38 p, 20 pl.
Ventura, G.T., Kenig, F., Grosjean, E., and Summons, R.E., 2005, Biomarker analysis of solvent extractable organic matter from the Neoproterozoic Kwagunt formation, Chuar group (~800–742 Ma), Grand Canyon, 22nd International Meeting on Organic Geochemistry, Volume 2: Seville, p. Abstr. PB 2–19.
Vidal, G., 1976a, Late Precambrian acritarchs from the Eleonore Bay Group and Tillite Group in East Greenland: Grønlands Geologiske Undersøgelse, v. 78, p. 119.
Vidal, G., 1976b, Late Precambrian microfossils from the Visingsö Beds in southern Sweden: Fossils and Strata, v. 9, p. 157.
Vidal, G., 1979, Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland: Grønlands Geologiske Undersøgelse Bulletin, v. 134, p. 155.
Vidal, G., 1981, Micropalaeontology and biostratigraphy of the upper Proterozoic and lower Cambrian sequence in East Finnmark, northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 362, p. 153.
Vidal, G., and Ford, T.D., 1985, Microbiotas from the late Proterozoic Chuar Group (Northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 349389.
Vidal, G., and Siedlecka, A., 1983, Planktonic, acid-resistant microfossils from the upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, East Finnmark, northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 382, p. 4579.
Vorob’eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European platform: Journal of Paleontology, v. 83, p. 161196.
Vorob’eva, N.G., Sergeev, V.N., and Petrov, P.Yu., 2015, Kotuikan Formation assemblage: A diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia: Precambrian Research, v. 256, p. 201222.
Walcott, C.D., 1899, Precambrian fossiliferous formations: Geological Society of America Bulletin, v. 10, p. 199244.
Weil, A.B., Geissman, J.W., and Van der Voo, R., 2004, Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: Implications for Laurentia’s Neoproterozoic APWP and Rodinia breakup: Precambrian Research, v. 129, p. 7192.
Yin, L., and Guan, B., 1999, Organic-walled microfossils of Neoproterozoic Dongjia Formation, Lushan County, Henan Province, North China: Precambrian Research, v. 94, p. 121137.
Yin, L., and Sun, W., 1994, Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan region, northern Anhui, China: Precambrian Research, v. 65, p. 95114.
Zang, W.L., 1995, Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia: Precambrian Research, v. 74, p. 119175.
Zang, W.L., and Walter, M.R., 1992a, Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia: Memoirs of the Association of Australasian Palaeontologists, v. 12, p. 1132.
Zang, W.L., and Walter, M.R., 1992b, Late Proterozoic and early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China: Precambrian Research, v. 57, p. 243323.
Zhang, Y., 1988, Proterozoic stromatolitic micro-organisms from Hebei, North China: Cell preservation and cell division: Precambrian Research, v. 38, p. 165175.

Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona

  • Susannah M. Porter (a1) and Leigh Anne Riedman (a1) (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed