Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T10:56:43.533Z Has data issue: false hasContentIssue false

The study of crinoids during the 20th century and the challenges of the 21st century

Published online by Cambridge University Press:  20 May 2016

William I. Ausich
Affiliation:
Department of Geological Sciences, The Ohio State University, Columbus 43210,
Thomas W. Kammer
Affiliation:
Department of Geology and Geography, West Virginia University, Morgantown 26506-6300,

Abstract

Development of a phylogenetic classification has been a primary pursuit of crinoid paleontologists during the 20th century. Wachsmuth and Springer and Bather vigorously debated crinoid classification during the waning years of the 19th century, and although tremendous progress has been made a comprehensive phylogenetic classification is still the primary objective for crinoid research during the early 21st century. Twentieth century crinoid studies are divisible into four periods. The direct influence of Frank Springer and Francis Bather continued until approximately 1925. Descriptive studies dominated the period of 1926–1943 and culminated in a comprehensive classification of Paleozoic crinoids that was a combination of the ideas of Wachsmuth and Springer and Bather. The end of the third period, 1944–1978, was marked by publication of the Treatise on Invertebrate Paleontology. The Treatise compilation brought together classification ideas for the entire class into a truly comprehensive classification, although problems remained with the phylogenetic underpinnings of the Treatise classification. During the third period, pioneering work on crinoid paleobiology laid the foundation for significant paleobiology advances for the fourth, 1979–1999, period. This last period also witnessed significant advances in the taxonomy of crinoid faunas at critical intervals, the taxonomy of crinoids from new geographic areas, and working toward the solution to the origin and early evolution of the Crinoidea.

Continued work on crinoids in the 21st century promises to provide significant advances both for understanding the evolutionary history of crinoids and for understanding the history of epifaunal benthic communities through time. Immediate challenges include completion of a comprehensive phylogenetic classification, which will open the door for evolutionary paleoecologic and paleobiology studies; utilization of computerized morphometric techniques in the analysis of functional morphology; systematic studies of new faunas in critical intervals; discovery of faunas in new geographic areas to better constrain knowledge of crinoid biogeography; and modern systematic revision of classic North American and European faunas.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amemiya, S., and Oji, T. 1992. Regeneration in sea lilies. Nature, 357:546547.CrossRefGoogle Scholar
Améziane, N. 1997. Echinodermata Crinoidea: Les Pentacrines récoltées lors de la campagne KARUBAR en Indonésie, p. 627667. In Crosnier, A. and Bouchet, P. (eds.), Résultats des Campagnes MUSORSTOM. Volume 16. Mémoires de Muséum National d'Histoire Naturelle, 172.Google Scholar
Arendt, Y. A. 1976. Ordovikskie iglokozhie Gemistreptokrinoidei (Ordovician echinoderms Hemistreptocrinoidea). Moskovskoe Obshchestvo Ispytatelei Prirody, Byulletin Otdel Geologischeski, 51:6384.Google Scholar
Arendt, Y. A., and Hecker, R. T. 1964. Klass Crinoidea. Morskie lilii. Sistematitcheskaia tchasti (Class Crinoidea. Crinoids. Systematic part), p. 76105, 214231. In Orlov, Y. A. (ed.), Osnovyi Paleontologii, Iglokozhi, Gemikhordovye, Pogonofory, i Shchetinkochelyustnye (Fundamentals of Paleontology, Echinodermata, Hemichordata, Pogonophora, and Chaetognatha). Moscow, Izdatelstvo Nedra.Google Scholar
Arendt, Y. A., and Rozhnov, S. V. 1995. Concerning hemistreptocrinoids. Paleontological Journal, 29:161166.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54:273288.Google Scholar
Ausich, W. I. 1984. Calceocrinids from the Early Silurian (Llandoverian) Brassfield Formation of southwestern Ohio. Journal of Paleontology, 58:11671185.Google Scholar
Ausich, W. I. 1986a. Palaeoecology and history of the Calceocrinidae (Palaeozoic Crinoidea). Palaeontology, 29:8599.Google Scholar
Ausich, W. I. 1986b. The crinoids of the Al Rose Formation (Early Ordovician, Inyo County, California, USA). Alcheringa, 10:217224.CrossRefGoogle Scholar
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.CrossRefGoogle Scholar
Ausich, W. I. 1997. Regional encrinites: A vanished lithofacies, p. 509519. In Brett, C. E., and Baird, G. C. (eds.), Paleontological Events: Stratigraphic, Ecologic and Evolutionary Implications. Columbia University Press, New York.Google Scholar
Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998b. Origin of the Crinoidea, p. 127132. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. Balkema Press, Rotterdam.Google Scholar
Ausich, W. I. 1998c. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions, New Series, 9, 36 p.Google Scholar
Ausich, W. I. 1999. Origin of crinoids, p. 237242. In Candia Carnevali, M. D. and Bonasara, F. (eds.), Echinoderm Research 1998. A. A. Balkema, Rotterdam.Google Scholar
Ausich, W. I., and Babcock, L. E. 1998. Phylogenetic position of Echmatocrinus brachiatus, a probable octacoral from the Burgess Shale. Palaeontology, 41:193202.Google Scholar
Ausich, W. I., and Babcock, L. E. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. Lethaia, 33:9294.CrossRefGoogle Scholar
Ausich, W. I., and Baumiller, T. K. 1993. Taphonomic method for determining muscular articulations in fossil echinoderms: a test for the occurrence of muscles in Lower Mississippian cladid crinoids. Palaios, 8:477484.CrossRefGoogle Scholar
Ausich, W. I., and Bother, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 2001 (in press). Sessile invertebrates, p. 384386. In Briggs, D. E. and Crowther, P. R. (eds.), Paleobiology II. Blackwell Scientific Publications, Ltd., London.CrossRefGoogle Scholar
Ausich, W. I., and Kammer, T. W. 1990. Systematics and phylogeny of the late Osagean and Meramecian crinoids Playcrinites and Eucladocrinus from the Mississippian stratotype region. Journal of Paleontology, 64:759778.CrossRefGoogle Scholar
Ausich, W. I., and Sevastopulo, G. D. 1994. Taphonomy of Lower Carboniferous crinoids from the Hook Head Formation, Ireland. Lethaia, 27:245256.CrossRefGoogle Scholar
Ausich, W. I., Bolton, T. E., Cumming, L. M. 1998. Whiterockian (Ordovician) crinoid fauna from the Table Head Group, western Newfoundland (Canada). Canadian Journal of Earth Sciences, 35:121130.CrossRefGoogle Scholar
Ausich, W. I., Kammer, T. W., and Baumiller, T. K. 1994. Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20:345361.Google Scholar
Ausich, W. I., Kammer, T. W., and Lane, N. G. 1979. Fossil communities of the Borden (Mississippian) delta in Indiana and northern Kentucky. Journal of Paleontology, 53:11811196.Google Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Paper, 45, 734 p.Google Scholar
Bates, D. E. B. 1968. On ‘Dendrocrinus’ cambriensis Hicks, the earliest known crinoid. Palaeontology, 11:406409.Google Scholar
Bather, F. A. 1890a. British fossil crinoids. Annals and Magazine of Natural History, series 6, 5:310334.Google Scholar
Bather, F. A. 1890b. British fossil crinoids. Annals and Magazine of Natural History, series 6, 5:373388, 485–486.CrossRefGoogle Scholar
Bather, F. A. 1891. Some alleged cases of misrepresentation. Annals and Magazine of Natural History, series 6:480489.CrossRefGoogle Scholar
Bather, F. A. 1893. The Crinoidea of Gotland, P. 1, The Crinoidea Inadunata. Kongl. Svenska Vetenskaps-Akademiens, Handlingar. Stockholm, 25(2):1182.Google Scholar
Bather, F. A. 1898. Wachsmuth and Springer's classification of crinoids. Natural Science, 12:337345.Google Scholar
Bather, F. A. 1898–1899. Wachsmuth and Springer's monograph on crinoids. Geological Magazine, new series, decade 4, (1898), First Notice, 276–283; Second Notice, 318–329; Third Notice, 419–428; Fourth Notice, 522–527; 6 (1899), Fifth Notice, 32–44; Sixth Notice, 117–127.Google Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science Report (1898):916923.Google Scholar
Bather, F. A. 1900a. The Crinoidea, p. 94204. In Lankester, E. R. (ed.), A Treatise on Zoology. Adam and Charles Black, London.Google Scholar
Bather, F. A. 1900b. Pores in the ventral sac of fistulate crinoids. American Geologist, 26:307312.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, 19:304321.CrossRefGoogle Scholar
Baumiller, T. K., and Ausich, W. I. 1992. The “broken stick” model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissues in fossils. Paleobiology, 18:288298.CrossRefGoogle Scholar
Baumiller, T. K., and Gaździcki, A. 1996. New crinoids from the Eocene La Meseta Formation of Seymour Island, Antarctica Peninsula, p. 101116. In Gaździcki, A. (ed.), Palaeontological Results from the Polish Antarctic Expeditions, Pt. II, Palaeontologica Polonica, 55.Google Scholar
Baumiller, T. K., and Woodley, J. D. 1991. Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science, 48:431448.Google Scholar
Baumiller, T. K., Llewellyn, G., Messing, C., and Ausich, W. I. 1995. Taphonomy and autotomy of isocrinid stalks. Palaios, 10:8795.CrossRefGoogle Scholar
Biese, W. 1934. Crinoidea triadica, 255 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 66. W. Junk, s'Gravenhage.Google Scholar
Biese, W. 1935–1937. Crinoidea jurassica, 739 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 70, 73, 76. W. Junk, s'Gravenhage.Google Scholar
Biese, W., and Sieverts-Doreck, H. 1937. Crinoidea creatcea, 254 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 77. W. Junk, s'Gravenhage.Google Scholar
Biese, W., and Sieverts-Doreck, H. 1939a. Crinoidea caenozoica, 151 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 80. W. Junk, s'Gravenhage.Google Scholar
Biese, W., and Sieverts-Doreck, H. 1939b. Supplementum ad Crinoidea triadica, jurassica, cretacea et caenozoica, 81 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 88. W. Junk, s'Gravenhage.Google Scholar
Blythe Cain, J. D. 1968. Aspects of the depositional environment and palaeoecology of crinoidal limestones. Scottish Journal of Geology, 4:191208.CrossRefGoogle Scholar
Bourseau, J.-P., and Roux, M. 1989. Echinodermes: Crinoïdes Pentacrinidae (MUSORSTOM 2 & CORINDON 2). p. 113201. In Forest, J. (ed.), Résultats des Campagnes MUSORSTOM. Volume 12. Mémoires de Muséum National d'Histoire Naturelle, 143.Google Scholar
Breimer, A. 1962. A monograph of Spanish Palaeozoic Crinoidea. Overdruk uit Leidse Geologische Mededelingen, Deel, 27, 189 p.Google Scholar
Brett, C. E. 1981. Systematics and paleoecology of Late Silurian (Wenlockian) calceocrinid crinoids from New York and Ontario. Journal of Paleontology, 55:145175.Google Scholar
Brett, C. E. 1985. Pelmatozoan echinoderms on Silurian bioherms in western New York and Ontario. Journal of Paleontology, 59:820838.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies, and Lagerstätten. Paleontological Society Papers, 3:147190.CrossRefGoogle Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., and Clement, C. R. 1983. Coronoidea: a new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus . Journal of Paleontology, 57:627651.Google Scholar
Broili, F. 1921. Suborder Unitacrinacea, p. 186. In von Zittel, K. A., Grundzüge der Paläontologie (Paläozoologie) (fifth edition). R. Oldenbourg, München and Berlin.Google Scholar
Broadhead, T. W. 1981. Carboniferous camerate crinoid subfamily, Dichocrininae. Palaeontographica, Abteilung A, 176:81157.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7(46):263499Google Scholar
Brower, J. C. 1974. Ontogeny of camerate crinoids. University of Kansas Paleontological Contributions Paper, 72, 53 p.Google Scholar
Brower, J. C. 1996. Carabocrinid crinoids from the Upper Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 71:442458.CrossRefGoogle Scholar
Brower, J. C., and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and eastern Tennessee. Bulletins of American Paleontology, 66, 125 p.Google Scholar
Brower, J. C., and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74(304):371506Google Scholar
Burdick, D. W., and Strimple, H. L. 1982. Genevievian and Chesterian crinoids of Alabama. Geological Survey of Alabama Bulletin, 121, 277 p.Google Scholar
Burke, J. J. 1968. Pachylocrinids from the Conemaugh Group, Pennsylvanian. Kirklandia, 3:118.Google Scholar
Burke, J. J. 1973. Four new pirasocrinid crinoids from the Ames Limestone, Pennsylvanian, of Brooke County, West Virginia. Annals of the Carnegie Museum, 44:157169.Google Scholar
Candia Carnevalli, M. D., Lucca, E., and Bonasora, F. 1993. Mechanisms of arm regeneration in the feather star Antedon mediterranea: Healing of wound and early stages of development. Journal of Experimental Zoology, 267:299317.CrossRefGoogle Scholar
Chapman, R. E., Andersen, A. F., and Jabo, S. J. 1999. Construction of the virtual Triceratops: procedures, results, and potentials. Journal of Vertebrate Paleontology, 19; 3, Supplement, p. 58.Google Scholar
Chen, Z., and Yao, J. 1993. Palaeozoic echinoderm fossils of western Yunnan, China. Geological Publishing House, Beijing, 102 p.Google Scholar
Chesnut, D. R. Jr., and Ettensohn, F. R. 1988. Hombergian (Chesterian) echinoderm paleontology and paleoecology, south-central Kentucky. Bulletins of American Paleontology, 95, 102 p.Google Scholar
Clark, A. H. 1908. Description of new species of crinoids, chiefly from the collections made by U.S. Fisheries steamer “Albatross” at the Hawaiian Islands in 1902; with remarks on the classification of the Comatulida. Proceedings of the U.S. National Museum, 34:209239.CrossRefGoogle Scholar
Clark, A. H. 1911. On a collection unstalked crinoids made by United States Fisheries steamer “Albatross” in the vicinity of the Philippine Islands. Proceedings of the U.S. National Museum, 39:529563.CrossRefGoogle Scholar
Clark, A. H. 1915. A monograph of existing crinoids. U.S. National Museum Bulletin, 82(1), The Comatulids, Pt. 1, 406 p.Google Scholar
Clark, A. H. 1931. A monograph on existing crinoids. I(3) Superfamily Comasterida. U.S. National Museum Bulletin, 82(3):1816.Google Scholar
Clark, A. H., and Clark, A. M. 1967. A monograph of the existing crinoids. U.S. National Museum, Bulletin 82, Volume 1, The Comatulids, Pt. 5, p. 1860.Google Scholar
Clark, H. L. 1916. Report on the sea-lilies, starfishes, brittle-stars and sea urchins obtained by the F. I. S. “Endeavour” on the coasts of Queensland, New South Wales, Tasmania, Victoria, South Australia, and Western Australia. Biological Results Fishing Experiments, F.I.S. “Endeavour” 1909–1914, 4:1123.Google Scholar
Conan, G., Roux, M., and Sibuet, M. 1981. A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep-Sea Research, 28A:441453Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.29:A–341.CrossRefGoogle Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Döderlein, L. 1907. Die gestielten Crinoiden der Siboga-Expedition: Siboga Expedite: Uitkomsten op zoologisch, botanisch, oceanographisch en geologisch Gebied, verzameld in Nederlandsch Oost-Indie 1899–1900, 42a, 54 p.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, Pt. I, Palaeontographical Society Monographs, London, 138 (no. 568):168.Google Scholar
Donovan, S. K. 1988. The early evolution of the Crinoidea, p. 236244. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Donovan, S. K. 1989. The significance of the British Ordovician crinoid fauna. Modern Geology, 13:243255.Google Scholar
Donovan, S. K. 1994. The Late Ordovician extinction of the crinoids in Britain. National Geographic Research and Exploration, 10:7279.Google Scholar
Donovan, S. K. 1995. Fossils explained, 15: Paleozoic crinoids. Geology Today, 11:196199.CrossRefGoogle Scholar
Donovan, S. K., and Franzén-Bengtson, C. 1988. Myelodactylid crinoid columnals from the Lower Visby Beds (Llandoverian) of Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 110:6979.CrossRefGoogle Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian), southern Ontario, Canada. Royal Ontario Museum Life Sciences Contributions, 137, 83 p.Google Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia, 21:147167.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21:273299.CrossRefGoogle Scholar
Foote, M. 2000. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25 (supplement to number 2), 115 p.Google Scholar
Fujita, T., Ohta, S., and Oji, T. 1987. Photographic observations of the stalked crinoid Metacrinus rotundus Carpenter in Suruga Bay, central Japan. Journal of the Oceanographical Society of Japan, 43:333343.CrossRefGoogle Scholar
Gislén, T. 1922. The crinoids form Dr. S. Bock's expedition to Japan 1914. Nova Acta Regiae Societatis Scientarium Upsaliensis, ser. 4, 5:1183.Google Scholar
Goldring, W. 1923. The Devonian Crinoids of the State of New York. New York State Museum Memoir 16, 670 p.Google Scholar
Grimmer, J. C., Holland, N. D., and Hayami, I. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata, Crinoidea). Zoomorphology, 105:3950.CrossRefGoogle Scholar
Guensburg, T. E. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. Bulletins of American Paleontology, 86(319), 100 p.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology, 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Guensburg, T. E., and Sprinkle, J. 1997. Rhombiferans are not the ancestors of crinoids. Geological Society of America Abstracts with Program, 29:A–341.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1998. The earliest camerate crinoids: new collections from the Early Ordovician of western Utah. Geological Society of America Abstracts with Program, 30:A–30.29: A–341.Google Scholar
Guensburg, T. E., and Sprinkle, J. 2001. Earliest crinoid: new evidence for the origin of the dominant Paleozoic echinoderms. Geology, 29:131134.2.0.CO;2>CrossRefGoogle Scholar
Hagdorn, H. 1988. Ainigmacrinus calyconodalis n.g. n.sp., eine ungewöhnliche Seelilie aus der Obertrias der Dolomiten. Neus Jahrbuch für Geologie und Paläontologie, Monatshefte, 1988:7196.CrossRefGoogle Scholar
Hagdorn, H. 1993. Encrinus liliiformis Im Trochitenkalk Süddeutschlands, p. 245260. In Hagdorn, H. and Seilacher, A. (eds.), Muschelkalk. Schöntaker Symposium 1991, Stuttgart.Google Scholar
Hagdorn, H. 1995. Triassic crinoids. Zentralblatt für Geologie und Paläontologie, 2:122.Google Scholar
Haude, R. 1980. Constructional morphology of the stems of Pentacrinitidae, and mode of life of Seirocrinus , p. 1723. In Jangoux, M. (ed.), Proceedings of the European Colloquium on Echinoderms, Brussels. A. A. Balkema, Rotterdam.Google Scholar
Haude, R. 1992. Scyphocrinoiden, die Bojen-Seelilien im Hohen Silur-Tiefen Devon. Palaeontographica Abteilung A, 222:141187.Google Scholar
Haugh, B. N. 1973. Water vascular system of the Crinoidea Camerata. Journal of Paleontology, 47:7790.Google Scholar
Haugh, B. N. 1975a. Digestive and coelomic systems of Mississippian camerate crinoids. Journal of Paleontology, 49:472492.Google Scholar
Haugh, B. N. 1975b. Nervous systems of Mississippian camerate crinoids. Paleobiology, 1:261272.CrossRefGoogle Scholar
Hauser, J. 1997. Die Crinoiden des Mittel-Devon der Eifler-Kalkmulden. J. Hauser [privately published]; Bonn, 273 p.Google Scholar
Hess, H. 1951. Ein neuer Crinoide aus dem mittleren Dogger der Nordschweiz (Paracomatula helvetica n. gen. n. sp.). Eclogae Geologicae Helvetiae, 43:208216.Google Scholar
Hess, H. 1972. Chariocrinus n. gen. für Isocrinus andreae Desor aus dem unteren Hauptrogenstein (Bajocien) des Basler Juras. Eclogae Geologicae Helvetiae, 65:197210.Google Scholar
Hess, H. 1983. Balanocrinus berchteni n. sp., un nouveau crinoïde bajocien des Préakoes médianes fribourgeoises. Eclogae Geologicae Helvetiae, 76:691700.Google Scholar
Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J. 1999. Fossil Crinoids. Cambridge University Press, Cambridge, 316 p.CrossRefGoogle Scholar
Holland, N. D., and Grimmer, J. C. 1981. Fine structure of the cirri and a possible mechanism for their motility in stalkless crinoids (Echinodermata). Cell Tissue Research, 214:207217.CrossRefGoogle Scholar
Holterhöff, P. F. 1996. Crinoid biofacies in Upper Carboniferous cyclothems, midcontinent North America: faunal tracking and the role of regional processes in biofacies recurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:4781.CrossRefGoogle Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3:1128.CrossRefGoogle Scholar
Jagt, J. W. M. 1995. Late Cretaceous and early Cenozoic crinoid assemblages from northeast Belgium and the southeast Netherlands, p. 185196. In Emson, R., Smith, A., and Campbell, A. (eds.), Echinoderm Research 1995. A. A. Balkema, Rotterdam.Google Scholar
Jagt, J. W. M. 1999. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—Part 1: Introduction and stratigraphy;—Part 2: Crinoids. Scripta Geologica, 116, 255 p.Google Scholar
Jell, P. A. 1999. Silurian and Devonian crinoids from central Victoria. Memoirs of the Queensland Museum, 43:1114.Google Scholar
Jell, P. A., and Theron, J. N. 1999. Early Devonian echinoderms from South Africa. Memoirs of the Queensland Museum, 43:115199.Google Scholar
Jell, P. A., and Willink, R. J. 1993. Early Permian cladid crinoids from the Gharif Formation of Oman. Memoirs of the Association of Australian Paleontologists, 15:305312.Google Scholar
Jell, P. A., Jell, J. S., Johnson, B. D., Mawson, R., and Talent, J. A. 1988. Crinoids from Devonian limestones of eastern Australia. Memoirs of the Queensland Museum, 25:355402.Google Scholar
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology, 59:551560.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology, 13:379395.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1992. Advanced cladid crinoids from the middle Mississippian of the east-central United States: primitive-grade calyces. Journal of Paleontology, 66:461480.CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology, 25:219222.2.3.CO;2>CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology, 24:155176.Google Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: possible inadunate cup plate homologies. Third North American Paleontological Convention Proceedings, 1:285290.Google Scholar
Kelly, S. M. 1986. Classification and evolution of class Crinoidea. Abstracts of the 4th North American Paleontological Convention:A23.Google Scholar
Kesling, R. V. 1965. Proctothylacocrinus esseri, a new crinoid from the Middle Devonian Silica Formation of northwestern Ohio. University of Michigan Museum of Paleontology Contributions, 20:7587.Google Scholar
Kesling, R. V., and Mintz, L. W. 1963. Species of the crinoid Dolatocrinus from the Middle Devonian Dock Street Clay of Michigan. University of Michigan Museum of Paleontology Contributions, 18:67100.Google Scholar
Kirk, E. 1938. Five new genera of Carboniferous Crinoidea Inadunata. Journal of the Washington Academy of Sciences, 28(4):158172.Google Scholar
Klikushin, V. G. 1987. Thiolliericrinid crinoids from the Lower Cretaceous of Crimea. Geobios, 20:625665.CrossRefGoogle Scholar
Klikushin, V. G. 1996. Late Jurassic crinoids from Sudak environs (Crimea). Palaeontographica Abteilung A, 238:97151.Google Scholar
Koch, D. L. 1962. Isocrinus from the Jurassic of Wyoming. Journal of Paleontology, 36:13131318.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Journal of Paleontology, Memoir 7, 49(supplement), 74 p.Google Scholar
Kristen-Tollmann, E. 1990. Mikrocrinoiden aus der Obertrias der Tethys. Geologisch-Paläontologische Mitteilungen Innsbruck, 17:51100.Google Scholar
Lane, N. G. 1963. The Berkeley crinoid collection from Crawfordsville, Indiana. Journal of Paleontology, 37:10011008.Google Scholar
Lane, N. G. 1970. Lower and Middle Ordovician crinoids from west-central Utah. Brigham Young University Geology Studies, 17:317.Google Scholar
Lane, N. G. 1972. Synecology of Middle Mississippian (Carboniferous) crinoid communities in Indiana. 24th International Geological Congress, Section, 7:8994.Google Scholar
Lane, N. G. 1973. Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). University of California Publications in Geological Sciences, 99:141 p.Google Scholar
Lane, N. G. 1978. Historical review of classification of Crinoidea, p. T348T359. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2).Google Scholar
Lane, N. G. 1979. Upper Permian crinoids from Djebel Tebaga, Tunisia. Journal of Paleontology, 53:121132.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1982. Microcrinoids from the Middle Pennsylvanian of Indiana. Journal of Paleontology, 56:103115.Google Scholar
Lane, N. G., and Webster, G. D. 1966. New Permian crinoid fauna from southern Nevada. University of California Publications in Geological Sciences, 63, 86 p.Google Scholar
Lane, N. G., Waters, J. A., and Maples, C. G. 1997. Echinoderm faunas of the Hongguleleeng Formation, Late Devonian (Famennian), Xinjiang-Uygur Autonomous Region, People's Republic of China. Paleontological Society Memoir 47, (Journal of Paleontology, 71(2) supplement), 43 p.Google Scholar
Laudon, L. R. 1973. Stratrgraphic crinoid zonation in Iowa Mississippian rocks. Proceedings of the Iowa Academy of Science, 80:2533.Google Scholar
Laudon, L. R., and Beane, B. H. 1937. The crinoid fauna of the Hampton Formation at LeGrand, Iowa. University of Iowa Studies in Natural History, 17(6):227272Google Scholar
Laudon, L. R., Parks, J. M., and Spreng, A. C. 1952. Mississippian crinoid fauna from the Banff Formation, Sunwapta Pass, Alberta. Journal of Paleontology, 26:544575.Google Scholar
LeMenn, J. 1985. Les crinoïdes du Dévonien Inférieur et Moyen du Massif Armoricain. La Société géologique et minéralogique de Bretagne Mémoires, 30, 268 p.Google Scholar
Lefeld, J. 1958. Dadocrinus gundeyi Lagenhan (Crinoidea) z Triasu Wierchowego Tatr. Acta Palaeontologica Polonica, 3:5974.Google Scholar
Lewis, R. D. 1980. Taphonomy, p. 2739. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms: Notes for a Short Course. University of Tennessee, Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Lewis, R. D., Chambers, C. R., and Peebles, M. W. 1990. Grain morphologies and surface textures of Recent and Pleistocene crinoid ossicles, San Salvador, Bahamas. Palaios, 5:570579.CrossRefGoogle Scholar
Liddell, W. D. 1975. Recent crinoid biostratinomy. Geological Society of America Abstracts with Programs, 7:1169.Google Scholar
McIntosh, G. C. 1979. Abnormal specimens of the Middle Devonian crinoid Bactrocrinites and their effect on the taxonomy of the genus. Journal of Paleontology, 53:1828.Google Scholar
McIntosh, G. C. 1984. Devonian cladid inadunate crinoids: Family Botryocrinidae Bather, 1899. Journal of Paleontology, 58:12601281.Google Scholar
McIntosh, G. C. 1986. Phylogeny of the dicyclic inadunate crinoid order Cladida. Fourth North American Paleontological Convention Abstracts:A31.Google Scholar
Macurda, D. B. Jr. 1973. Ecology of comatulid crinoids at Grand Bahama Island. Hydro-lab Journal, 2:924.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature, 247:394396.CrossRefGoogle Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. University of Kansas Paleontological Contributions Paper, 74, 22 p.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1976. The identification and interpretation of stalked crinoids (Echinodermata) from deep-water photographs. Bulletin of Marine Science, 26:205215.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1981. The skeletal morphology of the isocrinid crinoids Annacrinus wyvillethomsoni and Diplocrinus maclearanus . University of Michigan Museum of Paleontology Contributions, 25:169219.Google Scholar
Magnus, D. B. E. 1963. Der Federstern Heterometra savignyi im Roten Meer Natur und Museum, 93:355368.Google Scholar
Magnus, D. B. E. 1967. Ecological and ethological studies and experiments of the echinoderms of the Red Sea. Studies in Tropical Oceanography, 5:635664.Google Scholar
Manni, R., Nicosia, U., and Riou, B. 1985. Rhodanometra lorioli n. gen. n. sp. and the other Callovian crinoids from La Voulte-sur-Rhǒne (Ardéche, France). Estratto da Geologica Romana 24:87100.Google Scholar
Messing, C. G., RoseSmyth, M. C., Mailer, S. R., and Miller, J. E. 1988. Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science, 42:480487.Google Scholar
Messing, C. G., Neumann, A. C., and Lang, J. C. 1990. Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios, 5:1533.CrossRefGoogle Scholar
Meyer, D. L. 1971. Post-mortem disintegration of Recent crinoids and ophiuroids under natural conditions. Geological Society of America Abstracts with Programs, 3:645646.Google Scholar
Meyer, D. L. 1973a. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22:105130.CrossRefGoogle Scholar
Meyer, D. L. 1973b. Distribution and living habits of comatulids near Discovery Bay, Jamaica. Marine Science Bulletin, 23:244259.Google Scholar
Meyer, D. L. 1979. Length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension-feeding. Marine Biology, 51:361369.CrossRefGoogle Scholar
Meyer, D. L., and Ausich, W. I. 1997. Morphological variation within and among populations of the camerate crinoid Agaricocrinus (Lower Mississippian, Kentucky and Tennessee): breaking the spell of the mushroom. Journal of Paleontology, 71:896917.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology, 3:7482.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1980. Ecology and distribution of the shallow-water crinoids of Palau and Guam. Micronesica, 16:5999.Google Scholar
Meyer, D. L., and Meyer, K. B. 1986. Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. Palaios, 1:294302.CrossRefGoogle Scholar
Meyer, D. L., and Oji, T. 1993. Eocene crinoids from Seymour Island, Antarctic Peninsula: Paleobiogeographic and paleoecologic implications. Journal of Paleontology, 67:250257.CrossRefGoogle Scholar
Meyer, D. L., Ausich, W. I., and Terry, R. E. 1989. Comparative taphonomy of echinoderms in carbonate facies of the Fort Payne Formation (Lower Mississippian) of Kentucky and Tennessee. Palaios, 4:533552.CrossRefGoogle Scholar
Meyer, D. L., Milsom, C. V., and Webber, A. J. 1999. Uintacrinus: A riddle wrapped in an enigma. Geotimes, August:1416.Google Scholar
Miller, S. J. 1821. A natural history of the Crinoidea or lily-shaped animals, with observations on the genera Asteria, Euryale, Comatula, and Marsupites . Bryan and Co., Bristol, 150 p.Google Scholar
Milsom, C. V. 1994. Saccocoma: a benthic crinoid from the Jurassic Solnhofen Limestone, Germany. Palaeontology, 37:121129.Google Scholar
Milsom, C. V., Simms, M. J., and Gale, A. S. 1994. Phylogeny and paleobiology of Marsupites and Uintacrinus . Palaeontology, 37:595607.Google Scholar
Moore, R. C. 1967. Unique stalked crinoids from Upper Cretaceous of Mississippi. University of Kansas Paleontological Contributions Paper. 17, 35 p.Google Scholar
Moore, R. C., and Laudon, L. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 153 p.Google Scholar
Moore, R. C., and Miller, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. University of Kansas Paleontological Contributions, Echinodermata, Article 9, 86 p.Google Scholar
Moore, R. C., and Plummer, F. B. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. University of Texas Publication 3945, 468 p.Google Scholar
Moore, R. C., and Strimple, H. L. 1973. Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas. University of Kansas Paleontological Contributions, Echinodermata 12, Article, 60, 84 p.Google Scholar
Moore, R. C., and Teichert, C. (eds.). 1978. Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and The University of Kansas Press, Lawrence, 1027 p.Google Scholar
Moore, R. C., and Vokes, H. E. 1953. Lower Tertiary crinoids from northwestern Oregon. U.S. Geological Survey Professional Paper, 233E:111147Google Scholar
Motsumoto, H. 1929. Outline of a classification of Echinodermata. Science Reports of the Tohoku Imperial University, Sendai, Japan, Second Series (Geology), 8:2733.Google Scholar
Nekvasilova, O., and Prokop, R. 1963. Roveacrinidae (Crinoidea) from the Upper Cretaceous of Bohemia. Ústředního Ústavu Geologického, Věstník, C 38:4952.Google Scholar
Nicosia, U. 1991. Mesozoic crinoids from the north-western Turkey. Estratto da Geologica Romana, 27:389436.Google Scholar
Oji, T. 1985. Early Cretaceous Isocrinus from northeast Japan. Palaeontology, 28:629642.Google Scholar
Oji, T., and Amemiya, S. 1998. Survival of crinoid stalk and its taphonomic implications. Paleontological Research, 2:6770.Google Scholar
Pabian, R. K., and Strimple, H. L. 1985. Classification, paleoecology, and biostratigraphy of crinoids from the Stull Shale (Late Pennsylvanian) of Nebraska, Kansas, and Iowa. University of Nebraska State Museum Bulletin, 11, 81 p.Google Scholar
Peck, R. E. 1943. Lower Cretaceous crinoids from Texas. Journal of Paleontology, 17:451475.Google Scholar
Peck, R. E. 1948. A Triassic crinoid from Mexico. Journal of Paleontology, 22:8184.Google Scholar
Peck, R. E. 1955. Cretaceous microcrinoids from England. Journal of Paleontology, 29:10191029.Google Scholar
Peck, R. E., and Watkins, W. T. 1972. Comatulid crinoids from the Lower Cretaceous of Texas. Journal of Paleontology, 46:410414.Google Scholar
Perkins, S. 2000. A makeover for an old friend, time and technology revamp a dinosaur classic. Science News, 158(19):300302Google Scholar
Pisera, A., and Dzik, J. 1979. Tithonian crinoids from Rogoźnik (Plieniny Klippen Belt, Poland) and their evolutionary relationships. Eclogae Geologicae Helvetiae, 72:805849.Google Scholar
Prokop, R. J. 1970. Family Calceocrinidae Meek & Worthen, 1869 (Crinoidea) in the Silurian and Devonian of Bohemia. Sborník Geologickych Věd Paleontologie, 12:79134.Google Scholar
Prokop, R. J., and Petr, V. 1997. The genus Pygmaeocrinus Bouška, 1947 (Crinoidea, Inadunata) in the Devonian of the Barrandian area (Czech Republic). Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 53:110.Google Scholar
Ramsbottom, W. H. C. 1961. A monograph on British Ordovician Crinoidea. Palaeontographical Society Monograph, 114, 37 p.Google Scholar
Rasmussen, H. W. 1961. A monograph on the Cretaceous Crinoidea. udgivet af Det Kongelige Danske Videnskabernes Selskabs, Biologiske Skrifter, 12(1), 428 p.Google Scholar
Rasmussen, H. W. 1972. Lower Tertiary Crinoidea, Asteroidea, and Ophiuroidea from northern Europe and Greenland. Kongelige Danske Videnskabernes Selskabs, Biologiske Skrifter, 19, 83 p.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T928. In Moore, R. C. and Teichert, K. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Roux, M. 1977. Les Bourgueticrinina du Golfe de Gascogne. Bulletin du Museum National d'Histoire Naturelle Zoologie, 296:2582.Google Scholar
Roux, M. 1994. The CALSUB cruise on the bathyal slopes of New Caledonia, p. 947. In Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM. Volume 12. Mémoires du Muséum National d'Histoire Naturelle, 161.Google Scholar
Rowe, F. W. E., Hoggett, A. K., Birtles, R. A., and Vail, L. L. 1986. Revision of some comasters genera from Australia (Echinodermata: Crinoidea), with descriptions of two new genera and nine new species. Zoological Journal of the Linnean Society, 86:197277.CrossRefGoogle Scholar
Rozhnov, S. V. 1981. Morskie lilii nadsemeistva Pisocrinacea [The crinoid superfamily Pisocrinacea]. Akademiya Nawk SSSR, Trudy Paleontologicheskogo Institut, 192, 127 p.Google Scholar
Rozhnov, S. V. 1988. Morfologiya i sistematichskoye polozheniye nizhneordovikskikh morskikh liliy. Paleontologicheskii Zhurnal, 2:6779.Google Scholar
Rozhnov, S. V. 1989. The morphology and systematic position of Lower Ordovician sea lilies. Paleontological Journal, 2:6275.Google Scholar
Rutman, L., and Fishelson, L. 1969. Food composition and feeding behaviour of shallow-water crinoids at Eliat (Red Sea). Marine Biology, 3:4657.CrossRefGoogle Scholar
Schmidt, W. E. 1934. Die Crinoideen des Rheinischen Devons, Teil 1. Preussischen Geologischen Landesanstalt, Abhandlungen, new series, no. 163, 149 p.Google Scholar
Schmidt, W. E. 1942. Die Crinoideen des Rheinischen Devons, Teil 2. Reichsstelle für Bodenforschung, Abhandlungen, new series, no. 182, 253 p.Google Scholar
Seilacher, A., Drozdzewski, G., and Haude, R. 1968. Form and function of the stem in a pseudoplanktonic crinoid (Seirocrinus). Palaeontology, 11:275282.Google Scholar
Sevastopulo, G. D., and Lane, N. G. 1988. Ontogeny and phylogeny of disparid crinoids, p. 245253. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Sieverts-Doreck, H. 1951. Cyathidium im Tithon von Mähren? Neues Jarhbuch für Geologie und Paläontologie Abhandlungen, 94:14.Google Scholar
Sieverts-Doreck, H. 1952. “Orders of the Articulata,” p. 414. In Moore, R. C., Lalicker, C. G., and Fisher, A. G. (eds.), Invertebrate Fossils. McGraw-Hill Book Co, Inc., New York.Google Scholar
Sieverts-Doreck, H. 1953. Sous-classe 4. Articulata, p. 756765. In Priveteau, J. (ed.), Traité de paléontologie. Volume 3. Masson and Cie, Paris.Google Scholar
Sieverts-Doreck, H. 1981. Nachweis von Balanocrinus subteroides, Familie Isocrinidae, im Ober-Pliensbachium der Herforder Liasmulde. Berichte des Naturwissenschaftlichen Vereins für Bielefeld, 177192.Google Scholar
Sieverts-Doreck, H., and Biese, W. 1939. Supplementum ad Crinoidea triadica, jurassica, cretacea et caenozoica, 81 p. In Quenstedt, W. (ed.), Fossilium Catalogus I. Animalia, pars 88. W. Junk, s'Gravenhage.Google Scholar
Signor, P. W., and Vermeij, G. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology, 20:297319.CrossRefGoogle Scholar
Simms, M. J. 1986. Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudoplanktonic Isocrinida. Palaeontology, 29:475493.Google Scholar
Simms, M. J. 1989. British Lower Jurassic crinoids. Monograph of the Palaeontographical Society, London, 142:1103.Google Scholar
Simms, M. J. 1994. Reinterpretation of thecal plate homology and phylogeny in the class Crinoidea. Lethaia, 26:303312.CrossRefGoogle Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Simms, M. J., Gale, A. S., Gilliland, P., Rose, E. P. F., and Sevastopulo, G. D. 1993. Echinodermata, p. 491528. In Benton, M. J. (ed.), The Fossil Record 2. Chapman & Hall, London.Google Scholar
Springer, F. 1900. On the presence of pores in the ventral sac in fistulate crinoids. American Geologist, 26:133151.Google Scholar
Springer, F. 1913. Crinoidea, p. 173243. In Eastman, C. R. and von Zittel, K. A. (eds.), Text-book of Paleontology. Macmillan and Co., London.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution, Publication 2501, 486 p.Google Scholar
Sprinkle, J. (ed.). 1982. Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions Monograph, 1, 369 p.Google Scholar
Sprinkle, J., and Collins, D. 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia, 31:269282.CrossRefGoogle Scholar
Sprinkle, J., and Guensburg, T. E. 1997. How the crinoid got its cupplating: Arm brachials down plus stem (penta) meres up. Geological Society of America Abstracts with Program, 29:A–341.Google Scholar
Sprinkle, J., and Moore, R. C. 1978. Echmatocrinea, p. T405407. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Strimple, H. L. 1963. Crinoids of the Hunton Group (Devonian-Silurian) of Oklahoma. Oklahoma Geologial Survey Bulletin, 100, 169 p.Google Scholar
Strimple, H. L., and McGinnis, M. R. 1972. A new camerate crinoid from the Al Rose Formation, Lower Ordovician of California. Journal of Paleontology, 46:7274.Google Scholar
Strimple, H. L., and Moore, R. C. 1971. Crinoids of the Francis Shale (Missourian) of Oklahoma. University of Kansas Paleontological Contributions Paper, 55, 20 p.Google Scholar
Strimple, H. L., and Watkins, W. T. 1955. New Ordovician echinoderms. 1. Three new genera. Washington Academy of Sciences Journal, 45:347353.Google Scholar
Stukalina, G. A. 1966. O printsipakh klassifikatsii stebley drevnikh morskikh liliy. Paleontologicheskii Zhurnal, 3:94102 [On principles on classification of stems of ancient sea lilies].Google Scholar
Taylor, W., and Brett, C. E. 1996. Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. Palaios, 11:118140.CrossRefGoogle Scholar
Teichert, K. 1949. Permian crinoid Calceolispongia . Geological Society of America Memoir, 34, 132 p.Google Scholar
Ubaghs, G. 1953. Classe des Crinoïdes, p. 658773. In Priveteau, J. (ed.), Traité de paléontologie. Volume 3. Masson and Cie, Paris.Google Scholar
Ubaghs, G. 1956. Recherches sur les Crinoïdes Camerata du Silurien de Gotland (Suede) Introduction générale et partie I: Morphologie et Paléobiologie de Barrandeocrinus sceptrum Angelin. Arkiv för Zoologi, 9:515550.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoïde dicylique connu. University of Kansas Paleontological Contributions Paper, 38, 25 p.Google Scholar
Ubaghs, G. 1972. More about Aethocrinus moorei Ubaghs, the oldest known dicyclic crinoid. Journal of Paleontology, 46:773775.Google Scholar
Ubaghs, G. 1978. Origin of crinoids, p. T275T281. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Van Sant, J. F., and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. University of Kansas Paleontological Contributions Echinodermata Article, 7, 136 p.Google Scholar
Wachsmuth, C., and Springer, F. 1880. Revision of the Palaeocrinoi dae. Proceedings of the Academy of Natural Sciences of Philadelphia for 1879:226378.Google Scholar
Wachsmuth, C., and Springer, F. 1881. Revision of the Palaeocrinoidea, Pt. 2, Proceedings of the Academy of Natural Sciences of Philadelphia for 1881:175411 (1–237).Google Scholar
Wachsmuth, C., and Springer, F. 1885. Revision of the Palaeocrinoidea, Pt. 3, Sec. 1. Proceedings of the Academy of Natural Sciences of Philadelphia for 1885:223364 (1–139).Google Scholar
Wachsmuth, C., and Springer, F. 1886. Revision of the Palaeocrinoidae, Pt. 3, Sec. 2. Proceedings of the Academy of Natural Sciences of Philadelphia for 1885:64226 (140–302).Google Scholar
Wachsmuth, C., and Springer, F. 1891. The perisomic plates of the crinoids. Proceedings of the Academy of Natural Sciences of Philadelphia for 1890:345392.Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology, Memoir 21–22, 897 p.CrossRefGoogle Scholar
Walters, R. F., Chapman, R. E., and Mohn, B. J. 2000. Using virtual skeletons as a basis for reconstructing fossil vertebrates. Journal of Vertebrate Paleontology, 20; 3, Supplement, p. 71.Google Scholar
Wanner, J. 1931. Neue Beiträge zur Kenntnis der permischen Echinodermen von Timor, V. Poteriocrinidae, Pt. 1, Nederlandsch-Oost-Indie, Dienst van den Mijnbouw, Wetenschappelijke. Mededeelingen, Den Haag, no. 16, p. 127.Google Scholar
Wanner, J. 1949. Neue Beiträge zur Kenntnis der permischen Echinodermen von Timor, XVI. Poteriocrinidae, Pt. 4, Palaeontographica, Supplement, 4, 156 p.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids 1942–1968. Geological Society of America Memoir, 137, 341 p.Google Scholar
Webster, G. D. 1977. Bibliography and index of Paleozoic crinoids 1969–1973. Geological Society of America Microform Publication, 8, 235 p.Google Scholar
Webster, G. D. 1986. Bibliography and index of Paleozoic crinoids 1974–1980. Geological Society of America Microform Publication, 16, 405 p.Google Scholar
Webster, G. D. 1988. Bibliography and index of Paleozoic crinoids 1981–1985. Geological Society of America Microform Publication, 18, 236 p.Google Scholar
Webster, G. D. 1990. New Permian crinoids from Australia. Palaeontology, 33:4974.Google Scholar
Webster, G. D. 1993. Bibliography and index of Paleozoic crinoids 1986–1990. Geological Society of America Microform Publication 25, 204 p.Google Scholar
Webster, G. D. 1997. Lower Carboniferous echinoderms from northern Utah and western Wyoming. Utah Geological Survey Bulletin, 128, 65 p.Google Scholar
Webster, G. D., and Jell, P. A. 1992. Permian echinoderms from Western Australia. Memoirs of the Queensland Museum, 32:311373.Google Scholar
Webster, G. D., and Jell, P. A. 1993. Early Permian inadunate crinoids from Thailand. Memoirs of the Queensland Museum, 33:349359.Google Scholar
Webster, G. D., and Jell, P. A. 1999. New Permian crinoids from Australia. Memoirs of the Queensland Museum, 43:279339.Google Scholar
Webster, G. D., and Lane, N. G. 1987. Crinoids from the Anchor Limestone (Lower Mississippian) of the Monte Cristo Group southern Nevada. University of Kansas Paleontological Contributions Paper, 119, 56 p.Google Scholar
Willink, R. J. 1978. Catillocrinids from the Permian of eastern Australia. Alcheringa, 2:83102.CrossRefGoogle Scholar
Willink, R. J. 1979. Some conservative and some highly-evolved Permian crinoids from eastern Australia. Alcheringa, 3:117134.CrossRefGoogle Scholar
Witzke, B. J., and Strimple, H. L. 1981. Early Silurian camerate crinoids of eastern Iowa. Proceedings of the Iowa Academy of Sciences, 88:101137.Google Scholar
Wright, J. 1939. The Scottish Carboniferous Crinoidea. Royal Society of Edinburgh, Transactions, 60(1):178.CrossRefGoogle Scholar
Wright, J. 1950–1960. A monograph of the British Carboniferous Crinoidea. [1950, v. 1, pt. 1, i–xxx + 1–24, pls. 1–7, 4 text-figs.; 1951a, v. 1, pt. 2, 25–46, pls. 8–12, 10 text-figs.; 1951b, v. 1, pt. 3, 47–102, pls. 13–31, 27 text-figs.; 1952, v. 1, pt 4, 103–148, pls. 32–40, 40 text-figs.; 1954, v. 1, pt. 5, 149–190, pls. 41–47, 27 text-figs.; 1955a, v. 2, pt. 1, 191–254, pls. 48–63, 16 text-figs.; 1955b, v. 2, pt. 2, 255–272, pls. 64–67, 2 text-figs.; 1956, v. 2, pt. 3, 273–306, pls. 68–75, 2 text-figs.; 1958, v. 2, pt. 4, 307–328, pls. 76–81, 4 text-figs.; 1960, v. 2, pt. 5, 329–347, pls. A, B.]. London.Google Scholar
Zitt, J. 1979. Hemibrachiocrinidae Arendt, 1968 (Crinoidea, Cyrtocrinida) from the Lower Cretaceous of Štramberk (Czechoslovakia). Věstnik Ústředniho ústavu geologického, 54:341348.Google Scholar
Zitt, J. 1980. Comatulid crinoids from the Lower Cretaceous of Štramberk (Czechoslovakia). Časopis pro mineralogii a geologii, 25:125135.Google Scholar
Zittel, K. A. von. 1879. Handbuch der Palaeontologie, Band 1, Palaeozoologie, Abt. 1, R. Oldenbourg, München and Leipzig, 765 p.Google Scholar
Zittel, K. A. von. 1895. Grundzüge der Palaeontologie (Palaeozoologie) (first edition). R. Oldenbourg, München, 971 p.Google Scholar