Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:34:40.742Z Has data issue: false hasContentIssue false

Reinterpretation of the temporal and occipital regions in Diadectes and the relationships of diadectomorphs

Published online by Cambridge University Press:  14 July 2015

David S Berman
Affiliation:
1Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213
Stuart S. Sumida
Affiliation:
2Department of Organismal Biology and Anatomy, University of Chicago, 1025 East 57th Street, Chicago, Illinois 60637
R. Eric Lombard
Affiliation:
2Department of Organismal Biology and Anatomy, University of Chicago, 1025 East 57th Street, Chicago, Illinois 60637

Abstract

New materials from the Permo-Pennsylvanian of north-central New Mexico permit a new description of the temporal and occipital regions of the diadectomorph Diadectes. The important issue of the fate of the intertemporal bone is resolved by demonstrating its absence and apparent incorporation into the parietal as a lateral lappet. Four cranial autapomorphies of Diadectes are recognized: 1) loss of contact between postparietal and tabular; 2) supratemporal greatly enlarged with well-developed occipital process; 3) tabular no longer exposed on skull roof, but greatly reduced and incorporated into occipital plate, with a coarse, posteromedially facing surface; and 4) skull roofing bones thick and porous, with a consistent network of U-shaped grooves. The temporal–occipital region of Diadectes is compared with those of holotypic and recently collected specimens of Limnoscelis and Tseajaia, the type genera of the other two recognized diadectomorph families, Limnoscelidae and Tseajaiidae. On the basis of the literature the comparisons are extended to include certain late Paleozoic amniotes: synapsid Pelycosauria, Captorhinomorpha, and the primitive diapsid Petrolacosaurus. The results are subjected to a cladistic analysis, which supports the following hypotheses of relationships: 1) Diadectidae, Tseajaiidae, and Limnoscelidae form a natural group, the Diadectomorpha; 2) Diadectes and Tseajaia share a more recent common ancestor than either does with Limnoscelis; 3) Diadectomorpha, Pelycosauria, and their descendants form an unnamed, primitive sister clade to that consisting of Captorhinomorpha, Petrolacosaurus, and their descendants; and 4) the taxon Cotylosauria (sensu Heaton, 1980), consisting of Diadectomorpha and Seymouriamorpha, is paraphyletic and invalid. The third hypothesis dictates the assignment of Diadectomorpha to Amniota.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, D., and Carroll, R. 1967. Romeriscus, the oldest known reptile. Science, 157:5659.CrossRefGoogle ScholarPubMed
Benton, M. J. 1985. Classification and phylogeny of the diapsid reptiles. Zoological Journal of the Linnean Society, 84:97164.CrossRefGoogle Scholar
Berman, D. S., and Reisz, R. R. 1980. A new species of Trimerorhachis (Amphibia, Temnospondyli) from the Lower Permian Abo Formation of New Mexico, with discussion of Permian faunal distributions in that state. Annals of Carnegie Museum, 49:455485.CrossRefGoogle Scholar
Berman, D. S., and Eberth, D. A. 1987. Seymouria sanjuanensis (Amphibia, Batrachosauria) from the Lower Permian Cutler Formation of north-central New Mexico and the occurrence of sexual dimorphism in that genus questioned. Canadian Journal of Earth Sciences, 24:17691784.CrossRefGoogle Scholar
Berman, D. S., and Sumida, S. S. 1990. Limnoscelis dynatis, a new species (Amphibia, Diadectomorpha) from the Late Pennsylvanian Sangre de Cristo Formation of central New York. Annals of Carnegie Museum, 59:303341.CrossRefGoogle Scholar
Bolt, J. R., and Lombard, R. E. 1992. Nature and quality of the fossil evidence for otic evolution in early tetrapods, p. 377405. In Popper, A., Webster, D., and Fay, R. (eds.), The Evolutionary Biology of Hearing. Springer-Verlag, New York.CrossRefGoogle Scholar
Brinkman, D., and Eberth, D. A. 1983. The interrelationships of pelycosaurs. Breviora, 473:135.Google Scholar
Broom, R. 1910. A comparison of the Permian reptiles of North America with those of South Africa. American Museum of Natural History Bulletin, 28:197234.Google Scholar
Broom, R. 1914. Some points in the structure of the diadectid skull. American Museum of Natural History Bulletin, 33:109114.Google Scholar
Carroll, R. 1964. The earliest reptiles. Journal of the Linnean Society of London, Zoology, 45:6183.CrossRefGoogle Scholar
Carroll, R. 1967. A limnoscelid reptile from the Middle Pennsylvanian. Journal of Paleontology, 41:12561261.Google Scholar
Carroll, R. 1969a. A Middle Pennsylvanian captorhinomorph and the interrelationships of primitive reptiles. Journal of Paleontology, 43:151170.Google Scholar
Carroll, R. 1969b. The origin of reptiles, p. 144. In Gans, C., Bellairs, A. d'A., and Parsons, T. S. (eds.). The Biology of the Reptilia, Vol. 1. Academic Press, New York.Google Scholar
Carroll, R. 1969c. Problems of the origin of reptiles. Biological Reviews, 44:393432.CrossRefGoogle Scholar
Carroll, R. 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society of London, Series B, 257:267308.Google Scholar
Carroll, R. 1982. Early evolution of reptiles. Annual Review of Ecology and Systematics, 13:87109.CrossRefGoogle Scholar
Carroll, R. 1986. The skeletal anatomy and some aspects of physiology of primitive reptiles, p. 2545. In Hotton, N. III, Maclean, P. D., Roth, J. J., and Roth, E. C. (eds.), The Ecology and Biology of Mammallike Reptiles. Smithsonian Institution Press, Washington and London.Google Scholar
Carroll, R., and Baird, D. 1972. Carboniferous stem reptiles of the family Romeriidae. Museum of Comparative Zoology (Harvard University) Bulletin, 143:321364.Google Scholar
Case, E. C. 1908. Description of vertebrate fossils from the vicinity of Pittsburgh, Pennsylvania. Annals of Carnegie Museum, 4:234241.CrossRefGoogle Scholar
Case, E. C. 1911. A revision of the Cotylosauria of North America. Carnegie Institute of Washington, Publication 145, 122 p.CrossRefGoogle Scholar
Case, E. C., and Williston, S. W. 1913. Permo-Carboniferous vertebrates from New Mexico. Carnegie Institute of Washington, Publication 181, 81 p.CrossRefGoogle Scholar
Clark, J., and Carroll, R. 1973. Romeriid reptiles from the Lower Permian. Museum of Comparative Zoology (Harvard University) Bulletin, 144:353407.Google Scholar
Fracasso, M. 1983. Cranial osteology, functional morphology, systematics and paleoenvironment of Limnoscelis paludis Williston. Unpubl. Ph.D. dissertation, Yale University, New Haven, 624 p.Google Scholar
Fracasso, M. 1987. Braincase of Limnoscelis paludis Williston. Postilla, Yale University, 201:122.Google Scholar
Gauthier, J. A., Kluge, A. G., and Rowe, T. 1988. The early evolution of the Amniota, p. 103155. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Vol. 1, Amphibians, Reptiles and Birds. Systematics Association Special Volume 35A. Clarendon Press, Oxford.Google Scholar
Godfrey, S. J., Fiorillo, A. R., and Carroll, R. L. 1987. A newly discovered skull of the temnospondyl amphibian Dendrerpeton acadianum Owen. Canadian Journal of Earth Science, 24:796805.CrossRefGoogle Scholar
Gregory, W. K. 1946. Pareiasaurs versus placodonts as near ancestors to the turtles. American Museum of Natural History Bulletin, 86:281326.Google Scholar
Heaton, M. J. 1979. Cranial anatomy of primitive captorhinid reptiles from the Late Pennsylvanian and Early Permian Oklahoma and Texas. Oklahoma Geological Survey, Bulletin 127:184.Google Scholar
Heaton, M. J. 1980. The Cotylosauria: a reconsideration of a group of archaic tetrapods, p. 497551. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Systematics Association Special Volume Number 15, Academic Press, New York and London.Google Scholar
Heaton, M. J., and Reisz, R. R. 1986. Phylogenetic relationships of captorhinomorph reptiles. Canadian Journal of Earth Sciences, 23:402418.CrossRefGoogle Scholar
Hentz, T. F. 1988. Lithostratigraphy and paleoenvironments of upper Paleozoic red beds, north-central Texas: Bowie (new) and Wichita (revised) Groups. University of Texas, Austin, Bureau of Economic Geology Report of Investigations, 170:155.Google Scholar
Holmes, R. 1984. The Carboniferous amphibian Proterogyrinus scheelei Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society of London, Series B, 306:431524.Google Scholar
Hook, R. W. 1989. Stratigraphic distribution of tetrapods in the Bowie and Wichita Groups, Permo-Carboniferous of north-central Texas, p. 4753. In Hook, R. W. (ed.), Permo-Carboniferous Vertebrate Paleontology, Lithostratigraphy, and Depositional Environments of North-Central Texas. Field Trip Guidebook No. 2, 49th Annual Meeting of the Society of Vertebrate Paleontology, Austin, Texas.Google Scholar
Huene, F. Von 1913. The skull elements of the Permian Tetrapoda in the American Museum of Natural History, New York. American Museum of Natural History Bulletin, 32:315386.Google Scholar
Huene, F. Von 1956. Palaontologie und Phylogenie der niederen Tetrapoden. Gustav Fischer Verlag, Jena, 716 p.Google Scholar
Kemp, T. S. 1980. Origin of mammal-like reptiles. Nature, 5745:378380.CrossRefGoogle Scholar
Kemp, T. S. 1982. Mammal-like Reptiles and the Origin of Mammals. Academic Press, London, 363 p.Google Scholar
Langston, W. Jr. 1965. Oedaleops campi (Reptilia: Pelycosauria) new genus and species from the Lower Permian of New Mexico, and the family Eothrididae. Bulletin Texas Memorial Museum, 9:148.Google Scholar
Langston, W. Jr. 1966. Limnosceloides brachycoles (Reptilia: Captorhinomorpha), a new species from the Lower Permian of New Mexico. Journal of Paleontology, 40:690695.Google Scholar
Lewis, G. E., and Vaughn, P. P. 1965. Early Permian vertebrates from the Cutler Formation of the Placerville area, Colorado. Contributions to Paleontology, Geological Society Professional Paper 503-C:146.Google Scholar
Moss, J. L. 1972. The morphology and phylogenetic relationships of the Lower Permian tetrapod Tseajaia campi Vaughn (Amphibia: Seymouriamorpha). University of California Publications in Geological Sciences, 98:172.Google Scholar
Olson, E. C. 1947. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana, Geology, 7:253.Google Scholar
Olson, E. C. 1950. The temporal region of the Permian reptile Diadectes. Fieldiana, Geology, 10:6377.Google Scholar
Olson, E. C. 1966. Relationships of Diadectes. Fieldiana, Geology, 14:199227.Google Scholar
Panchen, A. L., and Smithson, T. R. 1988. The relationships of the earliest tetrapods, p. 132. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Vol. 1, Amphibians, Reptiles and Birds. Systematics Association, Special Volume 35A, Clarendon Press, Oxford.Google Scholar
Parrington, F. R. 1958. The problem of classification of reptiles. Journal of the Linnean Society of London, Zoology, 44:99115.CrossRefGoogle Scholar
Plummer, F. C., and Moore, R. C. 1921. Stratigraphy of the Pennsylvanian formations of north-central Texas. University of Texas Bulletin, 2132:1237.Google Scholar
Reisz, R. 1980. The Pelycosauria: a review of phylogenetic relationships, p. 553592. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Systematics Association, Special Volume 15, Academic Press, London and New York.Google Scholar
Reisz, R. 1981. A diapsid reptile from the Pennsylvanian of Kansas. Special Publication of the Museum of Natural History, University of Kansas, 7:174.Google Scholar
Reisz, R. 1986. Pelycosauria, p. 1102. In Wellnhofer, P. (ed.), Encyclopedia of Paleoherpetology, Part 17A. Gustav Fischer Verlag, Stuttgart.Google Scholar
Romer, A. S. 1946. The primitive reptile Limnoscelis restudied. American Journal of Science, 244:149188.CrossRefGoogle Scholar
Romer, A. S. 1952. Late Pennsylvanian and Early Permian vertebrates of the Pittsburgh-West Virginia region. Annals of Carnegie Museum, 33:47110.CrossRefGoogle Scholar
Romer, A. S. 1956. Osteology of the Reptiles. University of Chicago Press, 772 p.Google Scholar
Romer, A. S. 1974. Stratigraphy of the Permian Wichita redbeds of Texas. Breviora, 427:131.Google Scholar
Romer, A. S., and Price, L. I. 1940. Review of the Pelycosauria. Special Papers of the Geological Society of America, Number 28, 538 p.CrossRefGoogle Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnean Society, 85:317410.CrossRefGoogle Scholar
Swofford, D. L. 1984. PAUP: Phylogenetic Analysis Using Parsimony. Version 2.3. Privately printed documentation. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Vaughn, P. P. 1964. Vertebrates from the Organ Rock Shale of the Cutler Group, Permian of Monument Valley and vicinity, Utah and Arizona. Journal of Paleontology, 38:567583.Google Scholar
Vaughn, P. P. 1969. Upper Pennsylvanian vertebrates from the Sangre de Cristo Formation of central Colorado. Contributions in Science, Los Angeles County Museum of Natural History, 164:128.Google Scholar
Vaughn, P. P. 1972. More vertebrates, including a new microsaur, from the Upper Pennsylvanian of central Colorado. Contributions in Science, Los Angeles County Museum of Natural History, 223:130.Google Scholar
Watson, D. M. S. 1917. A sketch classification of the pre-Jurassic tetrapod vertebrates. Proceedings of the Zoological Society of London, 1917:167186.CrossRefGoogle Scholar
Watson, D. M. S. 1954. On Bolosaurus and the origin and classification of reptiles. Museum of Comparative Zoology (Harvard University) Bulletin, 111:297449.Google Scholar
White, T. E. 1939. Osteology of Seymouria baylorensis Broili. Museum of Comparative Zoology (Harvard University) Bulletin, 85:325409.Google Scholar