Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:32:00.665Z Has data issue: false hasContentIssue false

A redescription and phylogenetic analysis based on new material of the fossil newts Taricha oligocenica Van Frank, 1955 and Taricha lindoei Naylor, 1979 (Amphibia, Salamandridae) from the Oligocene of Oregon

Published online by Cambridge University Press:  22 April 2018

John J. Jacisin III*
Affiliation:
Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas 77840, U.S.A. 〈jjjacisin3@tamu.edu〉
Samantha S.B. Hopkins
Affiliation:
Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403-1272, U.S.A. 〈shopkins@uoregon.edu〉
*
*Corresponding author

Abstract

Complete body fossils of salamanders are relatively rare, but provide critical information on the evolutionary roots of extant urodele clades. We describe new specimens of the fossil salamandrids Taricha oligocenica Van Frank, 1955, and Taricha lindoei Naylor, 1979, from the Oligocene Mehama and John Day formations of Oregon that illustrate aspects of skeletal morphology previously unseen in these taxa, and contribute to our understanding of population-level variation. Morphological analysis of these specimens supports the classification of T. oligocenica and T. lindoei as two different species, distinct from extant Taricha. Parsimony-based, heuristic analysis of phylogeny using 108 morphological characters for 40 taxa yields different results from a phylogenetic analysis that excludes four taxa known only via vertebrae. Our smaller analysis generally agrees with molecular phylogenies of the family Salamandridae, but with poorer resolution for molgin newts, especially between Taricha and Notophthalmus. The analysis including all taxa produced polytomies mostly related to complications from several fossil taxa. The presence or absence of dorsally expanded, sculptured neural spine tables on trunk vertebrae, an important character in past descriptions of fossil salamandrids, appears to be either homoplastic within the Salamandridae, or requires an expansion of characters or character states. Taricha oligocenica and T. lindoei are separate species of an at least 33 million-year-old clade, but their relationships with each other and extant North American salamandrids remain unclear with current levels of morphological data. Salamandrid research requires additional morphological data, particularly for the vertebrae and ribs, to better resolve salamandrid evolutionary history through morphological characters.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, L.B. III, Woodburne, M.O., Fremd, T.J., Swisher, C.C. III, MacFadden, B.J., and Scott, G.R., 2008, Revised Chronostratigraphy and Biostratigraphy of the John Day Formation (Turtle Cove and Kimberly members), Oregon, with Implications for Updated Calibration of the Arikareean North American Land Mammal Age: The Journal of Geology, v. 116, p. 211237.Google Scholar
Atkins, J.B., and Franz-Odendaal, T.A., 2015, The evolutionary and morphological history of the parasphenoid bone in vertebrates: Acta Zoologica (Stockholm), v. 97, p. 255263.Google Scholar
Bestland, E.A., and Retallack, G.J., 1994, Geology and Paleoenvironments of the Painted Hills Unit, John Day Fossil Beds National Monument: National Park Service Open-File Report, v. 30, 211 p.Google Scholar
Boardman, G.S., and Schubert, B.W., 2011, First Mio-Pliocene salamander fauna from the southern Appalachians: Palaeontologia Electronica, v. 14, 19 p.Google Scholar
Brodie, E.D. Jr., 1968a, Investigations on the Skin Toxin of the Adult Rough-Skinned Newt, Taricha granulosa : Copeia, v. 2, p. 307.Google Scholar
Brodie, E.D. Jr., 1968b, Investigations on the Skin Toxin of the Red-Spotted Newt, Notophthalmus viridescens viridescens : American Midland Naturalist, v. 80, p. 276.Google Scholar
Brodie, E.D. Jr., 1977, Salamander antipredator postures: Copeia, v. 3, p. 523.Google Scholar
Brodie, E.D. Jr., 1983, Antipredator Adaptations of Salamanders: Evolution and Convergence Among Terrestrial Species, in Margaris, N.S., Arianoutsou-Faraggitaka, M., and Reiter, R.J., eds., Plant, Animal, and Microbial Adaptations to Terrestrial Environments: New York, Plenum Publishing Corporation, p. 109133.Google Scholar
Brodie, E.D. Jr., Hensel, J.L., and Johnson, J.A., 1974, Toxicity of the Urodele Amphibians Taricha, Notophthalmus, Cynops and Paramesotriton (Salamandridae): Copeia, v. 2, p. 506.Google Scholar
Brodie, E.D. Jr., Nussbaum, R.A., and DiGiovanni, M., 1984, Antipredator adaptations of Asian salamanders (Salamandridae): Herpetologica, v. 40, p. 5668.Google Scholar
Bruce, R.C., 2010, Proximate contributions to adult body size in two species of dusky salamanders (Plethodontidae: Desmognathus): Herpetologica, v. 66, p. 393402.Google Scholar
Buckley, D., and Sanchiz, B., 2012, Untrained versus specialized palaeontological systematics: a phylogenetic validity test using morphostructural conspicuity as character weight: Spanish Journal of Palaeontology, v. 27, p. 131142.Google Scholar
Caruso, N.M., Sears, M.W., Adams, D.C., and Lips, K.R., 2014, Widespread rapid reductions in body size of adult salamanders in response to climate change: Global Change Biology, v. 20, p. 17511759.Google Scholar
Dillhoff, R.M., Dillhoff, T.A., Dunn, R.E., Myers, J.A., and Strömberg, C.A.E., 2009, Cenozoic paleobotany of the John Day Basin, central Oregon, in O’Connor, J.E., Dorsey, R.J., and Madin, I.P., eds., Volcanoes to Vineyards: Geologic Field Trips through the Dynamic Landscape of the Pacific Northwest: Boulder, Colorado, Geological Society of America, Field Guide, v. 15, p. 135164.Google Scholar
Dubois, A., and Raffaëlli, J., 2009, A new ergotaxonomy of the family Salamandridae Goldfuss, 1820: Alytes, v. 26, p. 185.Google Scholar
Duellman, W.E., and Trueb, L., 1986, Biology of Amphibians: New York, McGraw Hill, 670 p.Google Scholar
Estes, R., 1981, Gymnophiona, Caudata, in Wellenhofer, P., ed., Handbuch der Paläoherpetologie, pt. 2: Stuttgart and New York, Gustav Fischer Verlag, 115 p.Google Scholar
Fitzinger, L.J.F.J., 1826, Neue Klassifikation der Reptilien nach ihren natürlichen Verwandtschaften nebst einer Verwandtschafts-Tafel und einem Verzeichniss der Reptilien-Sammlung des K. K. Zoologisch Museum’s zu Wien: Wien, J.G. Hübner, 66 p.Google Scholar
Fremd, T.J., 2010, Guidebook, SVP Field Symposium 2010, John Day Basin Field Conference, John Day Fossil Beds National Monument (and surrounding basin) Oregon, USA June 7–11, 2010: Society of Vertebrate Paleontology, Published Report, 153 p.Google Scholar
Goin, C.J., Goin, O.B., and Zug, G.R., 1978, Introduction to Herpetology: San Francisco, W.H. Freeman, 527 p.Google Scholar
Goldfuss, G.A., 1820, Handbuch der Zoologie, Dritter Theil, zweite Abtheilung: Nürnberg, Johann Leonhard Schrag, 512 p.Google Scholar
Good, D.A., and Wake, D.B., 1992, Geographic variation and speciation in the torrent salamanders of the Genus Rhyacotriton (Caudata: Rhyacotritonidae): Berkeley, University of California Publication in Zoology, v. 126, p. 191.Google Scholar
Gray, J.E., 1825, A synopsis of the genera of reptiles and Amphibia, with a description of some new species: Annals of Philosophy, Series 2, London, v. 10, p. 193–217.Google Scholar
Gray, J.E., 1850, Catalogue of the specimens of Amphibia in the collection of the British Museum, Part II. Batrachia Gradientia, etc.: London, Spottiswoodes & Shaw, 72 p.Google Scholar
Haeckel, E.H.P.A., 1866, Generelle Morphologie der Organismen, v. Volume 2: Berlin, Georg Reimer, p. 17150.Google Scholar
Hanifin, C.T., Brodie, E.D. III, and Brodie, E.D., 2004, A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa : Toxicon, v. 43, p. 243249.Google Scholar
Heiss, E., Natchev, N., Salaberger, D., Gumpenberger, M., Rabanser, A., and Weisgram, J., 2009, Hurt yourself to hurt your enemy: new insights on the function of bizarre antipredator mechanism in the salamandrid Pleurodeles waltl : Journal of Zoology, v. 280, p. 156162.Google Scholar
Holman, J.A., 2006, Fossil Salamanders of North America: Bloomington, Indiana University Press, 233 p.Google Scholar
Irmis, R.B., 2007, Axial skeleton ontogeny in the Parasuchia (Archosauria: Pseudosuchia) and its implications for ontogenetic determination in archosaurs: Journal of Vertebrate Paleontology, v. 27, p. 350361.Google Scholar
Kuchta, S.R., 2007, Contact zones and species limits: hybridization between lineages of the California Newt, Taricha torosa, in the Southern Sierra Nevada: Herpetologica, v. 63, p. 332350.Google Scholar
Maddison, W.P., and Maddison, D.R., 2011, Mesquite: a modular system for evolutionary analysis: Version 2.75, http://mesquiteproject.org.Google Scholar
Marjanović, D., and Witzmann, F., 2015, An extremely peramorphic newt (Urodela: Salamandridae: Pleurodelini) from the latest Oligocene of Germany, and a new phylogenetic analysis of extant and extinct salamandrids: PLoS ONE, v. 10, e0137068, https://doi.org/10.1371/journal.pone.0137068 Google Scholar
McClaughry, J.D., Wiley, T.J., Ferns, M.L., and Madin, I.P., 2010, Digital Geologic Map of the Southern Willamette Valley, Benton, Lane, Linn, Marion and Polk Counties, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-10-03, 113 p.Google Scholar
Meyer, H., 1973, The Oligocene Lyons Flora of northwestern Oregon: The Ore Bin, v. 35, p. 3751.Google Scholar
Meyer, H.W., and Manchester, S.R., 1997, The Oligocene Bridge Creek Flora of the John Day Formation, Oregon: University of California Publications in the Geological Sciences, v. 141, p. 1195.Google Scholar
Myers, J., Kester, P., and Retallack, G.J., 2002, Paleobotanical record of Eocene–Oligocene climate and vegetational change near Eugene, Oregon, in Moore, G.W., ed., Field Guide to Geologic Processes in Cascadia: Oregon Department of Geology and Mineral Industries Special Paper 36, p. 145154.Google Scholar
Naylor, B.G., 1978a, The frontosquamosal arch in newts as a defence against predators: Canadian Journal of Zoology, v. 56, p. 22112216.Google Scholar
Naylor, B.G., 1978b, The Systematics of Fossil and Recent Salamanders (Amphibia: Caudata) with Special Reference to the Vertebral Column and Trunk Musculature [Ph.D. Dissertation]: Edmonton, Alberta, University of Alberta, 857 p.Google Scholar
Naylor, B.G., 1979, A New Species of Taricha (Caudata: Salamandridae), from the Oligocene John Day Formation of Oregon: Canadian Journal of Earth Sciences, v. 16, p. 970973.Google Scholar
Naylor, B.G., 1982, A new specimen of Taricha (Amphibia: Caudata) from the Oligocene of Washington: Canadian Journal of Earth Sciences, v. 19, p. 22072209.Google Scholar
Naylor, B.G., and Fox, R.C., 1993, A new ambystomatid salamander, Dicamptodon antiquus n.sp. from the Paleocene of Alberta, Canada: Canadian Journal of Earth Sciences, v. 30, p. 814818.Google Scholar
Nussbaum, R.A., and Brodie, E.D. Jr., 1982, Partitioning of the salamandrid genus Tylototriton Anderson (Amphibia: Caudata) with a description of a new genus: Herpetologica, v. 38, p. 320332.Google Scholar
Nussbaum, R.A., Brodie, E.D. Jr., and Datong, Y., 1995, A taxonomic review of Tylototriton verrucosus Anderson (Amphibia: Caudata: Salamandridae): Herpetologica, v. 51, p. 257268.Google Scholar
Peabody, F.E., 1959, Trackways of living and fossil salamanders: University of California Publications in Zoology, v. 63, p. 171.Google Scholar
Pollett, K.L., MacCracken, J.G., and MacMahon, J.A., 2010, Stream buffers ameliorate the effects of timber harvest on amphibians in the Cascade Range of southern Washington, USA: Forest Ecology and Management, v. 260, p. 10831087.Google Scholar
Pyron, R.A., 2014, Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians: Systematic Biology, v. 63, p. 779797.Google Scholar
Rasmussen, D.L., 1977, Geology and Mammalian Paleontology of the Oligocene-Miocene Cabbage Patch Formation, Central-Western Montana [Ph.D. dissertation]: Lawrence, Kansas, University of Kansas, 794 p.Google Scholar
Rasmussen, D.L., and Prothero, D.R., 2003, Lithostratigraphy, biostratigraphy, and magnetostratigraphy of Arikareean strata west of the Continental Divide in Montana, in Raynolds, R.G., and Flores, R.M., eds., Cenozoic Systems of the Rocky Mountain Region: Denver, Colorado, Rocky Mountain SEPM, p. 479499.Google Scholar
Rathke, M.H., 1833, Fünftes Heft, in F. Eschscholtz, Zoologischer Atlas, enhaltend Abbildungen und Beschreibungen neuer Thierarten, während das Flottcapitains v. Kotzebue zweiter Reise um die Welt, auf der Russisch-Kaiserlischen Kriegsschlupp Predpriatie in den Jahren 1823–1826 beobachtet, Fünftes Heft: Berlin, G. Reimer, 28 p.Google Scholar
Reading, C.J., 2007, Linking global warming to amphibian declines through its effects on female body condition and survivorship: Oecologia, v. 151, p. 125131.Google Scholar
Retallack, G.J., 2008, Cenozoic cooling and grassland expansion in Oregon and Washington: Paleobios, v. 28, p. 89113.Google Scholar
Retallack, G.J., Bestland, E.A., and Fremd, T.J., 2000, Eocene and Oligocene paleosols of central Oregon: Geological Society of America Special Paper 344, 192 p.Google Scholar
Retallack, G.J., Orr, W.N., Prothero, D.R., Duncan, R.A., Kester, P.R., and Ambers, C.P., 2004, Eocene–Oligocene extinction and paleoclimatic change near Eugene, Oregon: Geological Society of America Bulletin, v. 116, p. 817839.Google Scholar
Schoch, R.R., and Rasser, M.W., 2013, A new salamandrid from the Miocene Randeck Maar, Germany: Journal of Vertebrate Paleontology, v. 33, p. 5866.Google Scholar
Schoch, R.R., Poschmann, M., and Kupfer, A., 2015, The salamandrid Chelotriton paradoxus from Enspel and Randeck Maars (Oligocene–Miocene, Germany): Palaeobiodiversity and Palaeoenvironments, v. 95, p. 7786.Google Scholar
Scopoli, G.A., 1777, Introductio ad Historiam Naturalam, Sistens Genera Lapidium, Planatarum, et Animalium Hactenus Detecta, Caracteribus Essentialibus Donata in Tribus Divisa, Subinde ad Leges Naturae: Prague, Gerle, 506 p.Google Scholar
Shubin, N., Wake, D.B., and Crawford, A.J., 1995, Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): evolutionary and phylogenetic implications: Evolution, v. 49, p. 874884.Google Scholar
Smith, G.A., Manchester, S.R., Ashwill, M., McIntosh, W.C., and Conrey, R.M., 1998, Late Eocene–early Oligocene Tectonism, Volcanism, and Floristic Change near Gray Butte, Central Oregon: Geological Society of America Bulletin, v. 110, p. 759778.Google Scholar
Swofford, D.L., 2002, PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods) [Software]: Version 4.0a152; 2014, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Thormahlen, D.J., 1984, Geology of the Northwest One-quarter of the Prineville Quadrangle, Central Oregon [Masters Thesis]: Corvallis, Oregon State University, 106 p.Google Scholar
Tihen, J.A., 1974, Two new North American Miocene salamandrids: Journal of Herpetology, v. 8, p. 211218.Google Scholar
Titus, T.A., and Larson, A., 1995, A molecular phylogenetic perspective on the evolutionary radiation of the salamander family Salamandridae: Systematic Biology, v. 44, p. 125151.Google Scholar
Van Frank, R., 1955, Palaeotaricha oligocenica, new genus and species, an Oligocene salamander from Oregon: Breviora, v. 45, p. 112.Google Scholar
Venczel, M.A., 2008, New salamandrid amphibian from the Middle Miocene of Hungary and its phylogenetic relationships: Journal of Systematic Palaeontology, v. 6, p. 4159.Google Scholar
Wake, D.B., and Özeti, N., 1969, Evolutionary relationships in the family Salamandridae: Copeia, v. 1, p. 124137.CrossRefGoogle Scholar
Wakely, J.F., Fuhrman, G.J., Fuhrman, F.A., Fischer, H.G., and Mosher, H.S., 1966, The occurrence of tetrodotoxin (tarichatoxin) in Amphibia and the distribution of the toxin in the organs of newts (Taricha): Toxicon, v. 3, p. 195203.Google Scholar
Weaver, W.G. Jr., 1963, Variations in the prevomerine tooth patterns in the salamander genus Taricha : Copeia, v. 3, p. 562564.Google Scholar
Zhang, P., Papenfuss, T.J., Wake, M.H., Qu, L., and Wake, D.B., 2008, Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes: Molecular Phylogenetics and Evolution, v. 49, p. 586597.Google Scholar