Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T23:33:23.414Z Has data issue: false hasContentIssue false

A proposed classification of archeopyle types in calcareous dinoflagellate cysts

Published online by Cambridge University Press:  20 May 2016

Michael Streng
Affiliation:
Uppsala Universitet, Institutionen för geovetenskaper, Paleobiologi, Norbyvägen 22, 75236 Uppsala, Sweden,
Tania Hildebrand-Habel
Affiliation:
Universitetet i Oslo, Institutt for geologi, Postboks 1047 Blindern, 0316 Oslo, Norway
Helmut Willems
Affiliation:
Universität Bremen, FB-5 Geowissenschaften, Postfach 330 440, 28334 Bremen, Germany

Abstract

The phylogenetic significance of archeopyles in calcareous dinoflagellates cysts has been evaluated, and a classification model is developed that focuses on the archeopyle categories and types established for organic-walled dinoflagellates by Evitt (1967, 1985). Several of Evitt's archeopyle categories are presently recognized within the calcareous dinoflagellate cysts: apical, intercalary, and combination archeopyles, which are here subdivided into eight archeopyle types and several variations. Archeopyles that cannot be assigned to a distinct type, and those with outlines that do not allow an accurate interpretation, are together placed in a separate category: miscellaneous archeopyles. The stratigraphic distribution of the different archeopyle types reveals a phylogenetic trend characterized by an increase of the number of plates involved in archeopyle formation. The first calcareous dinoflagellate cysts to appear in the late Triassic have a monoplacoid apical archeopyle. The first taxa that show an archeopyle involving more than one plate are from the Early Cretaceous, with the first triplacoid apical archeopyle appearing at the Berriasian/Valanginian boundary. This is followed by the first combination archeopyle, which includes six plates, in the middle Aptian. Epitractal archeopyles originated no earlier than the early Oligocene. At the beginning of the Paleogene, species with a combination archeopyle increased in abundance, progressively replacing species possessing an apical archeopyle that dominated during the Mesozoic. Newly described species are: Calciodinellum clamosum, accommodating the two subspecies Calciodinellum clamosum subsp. clamosum Autonym, and Calciodinellum clamosum subsp. latum; Calciodinellum kerguelense; Fuettererella belliata; and Pernambugia? patata. New combinations are: Cervisiella operculata (Bramlette and Martini, 1964); Praecalcigonellum sulcatum (Keupp, 1979a); and Praecalcigonellum dolium (Keupp, 1979b). Because of the new interpretation of their archeopyles we emend the following genera: Cervisiella Hildebrand-Habel, Willems, and Versteegh, 1999; Echinodinella Keupp, 1980; Fuettererella Kohring, 1993a; and Pernambugia Janofske and Karwath in Karwath (2000). The species Orthopithonella? minuta and Pirumella johnstonei, which have been previously synonymized with Fuettererella deflandrei, are retained as independent taxa.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselman, R., and Keupp, H. 1990. Recent obliquipithonelloid calcareous cysts of Scrippsiella patagnoica [sic] sp. nov. (Peridiniaceae, Dinophyceae) from plankton of the Golfo San Jorge (Patagonia, Argentina). Marine Micropaleontology, 16:169179.Google Scholar
Bajraktarević, Z. 1983. O taksonomskom polo aju oblika Semseya lamellata Franzenau 1892–1894. Geološki vjesnik, 36:912.Google Scholar
Balech, E. 1959. Two new genera of dinoflagellates from California. The Biological Bulletin, 116:195203.Google Scholar
Balech, E. 1967. Dinoflagelados nuevos o interesantes del Golfo de Mexico y Caribe. Museo Argentino de ciencias naturales “Bernardino Rivadavia” e Instituto nacional de investigación de las ciencias naturales, Revista, Hidrobiología, 2:77126.Google Scholar
Balech, E. 1990. Four new dinoflagellates. Helgoländer Meeresunter-suchungen, 44:387396.Google Scholar
Below, R. 1987. Evolution und Systematik von Dinoflagellaten-Zysten aus der Ordnung Peridiniales. I. Allgemeine Grundlagen und Subfamilie Rhaetogonyaulacoideae (Familie Peridiniaceae). Palaeontographica, Abteilung B, 205(1–6):1164.Google Scholar
Berggren, W. A., Kent, D. V., and Flynn, J. J. 1985a. Jurassic to Paleogene, Pt. 2. Paleogene geochronology and chronostratigraphy, p. 147195. In Snelling, N. J. (ed.), The Chronology of the Geological Record. Memoirs of the Geological Society London, 10.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985b. Cenozoic geochronology. Bulletin of the Geological Society of America, 96:14071418.Google Scholar
Bolli, H. M. 1974. Jurassic and Cretaceous Calcisphaerulidae from DSDP Leg 27, eastern Indian Ocean. Initial Reports of the Deep Sea Drilling Project, 27:843907.Google Scholar
Bolli, H. M. 1978. Upper Jurassic Calcisphaerulidae from DSDP Leg 44, Hole 391C, Blake-Bahama Basin, Western North Atlantic. Initial Reports of the Deep Sea Drilling Project, 44:911919.Google Scholar
Bolli, H. M. 1980. Calcisphaerulidae and Calpionellidae from the Upper Jurassic and Lower Cretaceous of Deep Sea Drilling Project Hole 416A, Moroccan Basin. Initial Reports of the Deep Sea Drilling Project, 50:525543.Google Scholar
Borza, K. 1972. Neue Arten der Gattungen Cadosina Wanner, Pithonella Lorenz und Palinosphaera Reinsch aus der oberen Kreide. Geologicky Sbornik. Geologica Carpathica, 23(1):139150.Google Scholar
Bralower, T. J., Bown, P. R., and Siesser, W. G. 1991. Significance of Upper Triassic nannofossils from the southern hemisphere (ODP Leg 122, Wombat Plateau, N. W. Australia). Marine Micropaleontology, 17:119154.Google Scholar
Bramlette, M. N., and Martini, E. 1964. The great change in calcareous nannoplankton fossils between the Maestrichtian and Danian. Micropaleontology, 10:291322.Google Scholar
Bujak, J. P., and Davies, E. H. 1983. Modern and fossil Peridiniineae. American Association of Stratigraphic Palynologists, Contributions Series, 13, 203 p.Google Scholar
Bukry, D., and Bramlette, M. N. 1969. Some new and stratigraphically useful calcareous nannofossils of the Cenozoic. Tulane Studies in Geology and Paleontology, 7(3):131142.Google Scholar
Bütschli, O. 1885. Protozoa, p. 8651088. In Bronn, H. G. (ed.), Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild, Vol. 1. Wintersche Verlagsbuchhandlung, Leipzig.Google Scholar
Dale, B. 1992. Dinoflagellate contributions to the open ocean sediment flux, p. 131. In Dale, B. and Dale, A. L. (eds.), Dinoflagellate contributions to the deep sea. Ocean Biocoenosis Series, 5.Google Scholar
Damassa, S. P. 1998. A hole-y alliance: calciodinelloidean archeopyles in dinosporin cysts. Palynology, 22:238.Google Scholar
Deflandre, G. 1947. Calciodinellum nov. gen., premier représentant d'une famille nouvelle de Dinoflagellés fossiles à thèque calcaire. Comptes Rendus de l'Académie des Sciences, 224:17811782.Google Scholar
Deflandre, G. 1948. Les calciodinellidés. Dinoflagellés fossiles à thèque calcaire. Le Botaniste, 34:191219.Google Scholar
Deflandre, G., and Dangeard, L. 1938. Schizosphaerella, un nouveau microfossile méconnu du Jurassique moyen et supérieur. Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 207:11151117.Google Scholar
Eddy, S. 1930. The fresh-water armored or thecate dinoflagellates. Transactions of the American Microscopical Society, 49(4):277321.Google Scholar
Ehrenberg, C. G. 1831. Animalia evertebrata. In Hemprich, P. C. and Ehrenberg, C. G. (eds.), Symbolae physicae seu icones et descriptiones naturalium novorum aut minus cognitorum quae ex itineribus Lybiam Aegyptum Nubiam Dongalam Syriam Arabiam et Habessinian. Pars Zoologica. Abhandlungen der deutschen Akademie der Wissenschaften. (unpaginated)Google Scholar
Erwin, D. H., and Droser, M. L. 1993. Elvis taxa. Palaios, 8:623624.Google Scholar
Esper, O., Zonneveld, K. A. F., Höll, C., Karwath, B., Kuhlmann, H., Schneider, R. R., Vink, A., Weise-Ihlo, I., and Willems, H. 2000. Reconstruction of palaeoceanographic conditions in the South Atlantic Ocean at the last two Terminations based on calcareous dinoflagellate cysts. International Journal of Earth Sciences, 88:680693.Google Scholar
Evitt, W. R. 1961. Observations on the morphology of fossil dinoflagellates. Micropaleontology, 7:385420.Google Scholar
Evitt, W. R. 1967. Dinoflagellate studies II. The archeopyle. Stanford University Publications, Geological Sciences, 10(3):183.Google Scholar
Evitt, W. R. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation. American Association of Stratigraphic Palynologists, Monograph Series, 1, 333 p.Google Scholar
Fensome, R. A., Riding, J. B., and Taylor, F. J. R. 1996. Dinoflagellates, p. 107169. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology, special publication, 7, 351 p.Google Scholar
Franzenau, A. 1892–1894. Fossile Foraminiferen von Markuševec. Glasnik Hrvatskoga narovoslovnog društva, 6(1–6):249291.Google Scholar
Fütterer, D. 1976. Kalkige Dinoflagellaten (“Calciodinelloideae”) und die systematische Stellung der Thoracosphaeroideae. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 151:119141.Google Scholar
Fütterer, D. 1977. Distribution of calcareous dinoflagellates in Cenozoic sediments of Site 366, Eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project, 41:709737.Google Scholar
Fütterer, D. 1984. Pithonelloid calcareous dinoflagellates from the Upper Cretaceous and Cenozoic of the southeastern Atlantic Ocean, Deep Sea Drilling Project Leg 74. Initial Reports of the Deep Sea Drilling Project, 74:533541.Google Scholar
Fütterer, D. 1990. Distribution of calcareous dinoflagellates at the Cretaceous-Tertiary boundary of Queen Maud Rise, eastern Weddell Sea, Antarctica (ODP Leg 113). Proceedings of the Ocean Drilling Program, Scientific Results, 113:533548.Google Scholar
Gaarder, K. R. 1954. Coccolithineae, Silicoflagellatae, Pterospermataceae and other forms from the Michael Sars North Atlantic Deep Sea Expedition 1910. Report on the Scientific Results of the “Michael Sars” North Atlantic Deep Sea Expedition 1910, 2:120.Google Scholar
Gao, X., and Dodge, J. D. 1991. The taxonomy and ultrastructure of a marine dinoflagellate, Scrippsiella minima sp. nov. British Phycological Journal, 26:2131.Google Scholar
Gilbert, M. W., and Clark, D. L. 1983. Central Arctic Ocean paleoceanographic interpretations based on Late Cenozoic calcareous dinoflagellates. Marine Micropaleontology, 7:385401.Google Scholar
Gocht, H. 1957. Mikroplankton aus dem nordwestdeutschen Neokom. Paläontologische Zeitschrift, 31:163185.Google Scholar
Haeckel, E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, I. Systematische Phylogenie der Protisten und Pflanzen. Reimer, Berlin, 400 p.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea-levels since the Triassic. Science, 235:11561167.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change, p. 71108. In Wilgus, C. K., Hastings, B. J., Posamentier, H., van Wagoner, J. C., Ross, C. A., and Kendall, C. G. St. C. (eds.), Sea-level change—An integrated approach. SEPM Special Publication, 42.Google Scholar
Head, M. J. 1996. Modern dinoflagellate cysts and their biological affinities, p. 11971248. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Head, M. J. 1998. New goniodomacean dinoflagellates with a compound hypotractal archeopyle from the late Cenozoic: Capisocysta Warny and Wrenn, emend. Journal of Paleontology, 72:797809.Google Scholar
Head, M. J., Harland, R., and Matthiessen, J. 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science, 16:621636.Google Scholar
Heer, O. 1865. Die Urwelt der Schweiz. Friedrich Schulthess, Zürich, 622 p.Google Scholar
Hildebrand-Habel, T., and Streng, M. 2003. Calcareous dinoflagellate associations and Maastrichtian-Tertiary climatic change in a high latitude core (ODP Hole 689B, Maud Rise, Weddell Sea). Palaeogeography, Palaeoclimatology, Palaeoecology. 197:293321.Google Scholar
Hildebrand-Habel, T., and Willems, H. 1997. Calcareous dinoflagellate cysts from the Middle Coniacian to Upper Santonian chalk facies of Lägerdorf (N Germany). Courier Forschungsinstitut Senckenberg, 201:177199.Google Scholar
Hildebrand-Habel, T., and Willems, H. 1999. New calcareous dinoflagellates from the Paleogene of the South Atlantic Ocean (DSDP Site 357, Rio Grand Rise). Journal of Micropalaeontology, 18:8995.Google Scholar
Hildebrand-Habel, T., and Willems, H. 2000. Distribution of calcareous dinoflagellates from the Maastrichtian to early Miocene of DSDP Site 357 (Rio Grande Rise, western South Atlantic Ocean). International Journal of Earth Sciences, 88:694707.Google Scholar
Hildebrand-Habel, T., Willems, H., and Versteegh, G. J. M. 1999. Variations in calcareous dinoflagellate associations from the Maastrichtian to middle Eocene of the western South Atlantic Ocean (São Paulo Plateau, DSDP Leg 39, Site 356). Review of Palaeobotany and Palynology, 106:5787.Google Scholar
Höll, C., Karwath, B., Rühlemann, C., Zonneveld, K. A. F., and Willems, H. 1999. Palaeoenvironmental information gained from calcareous dinoflagellates: the late Quaternary eastern and western tropical Atlantic Ocean in comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 146:147164.Google Scholar
Hultberg, S. U. 1985. Pithonella organica—a new calcareous dinoflagellate with an inner organic wall. Grana, 24:115120.CrossRefGoogle Scholar
Jafar, S. A. 1979. Taxonomy, stratigraphy and affinities of calcareous nannoplankton genus Thoracosphaera Kamptner. Proceedings of the 4th International Palynological Conference, Lucknow (1976–1977) 2:121.Google Scholar
Jafar, S. A. 1983. Significance of Late Triassic calcareous nannoplankton from Austria and southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 166:218259.Google Scholar
Janofske, D. 1987. Kalkige Nannofossilien aus der Ober-Trias (Rhät) der Nördlichen Kalkalpen. Berliner geowissenschaftliche Abhandlungen, A 86:4567.Google Scholar
Janofske, D. 1992. Kalkiges Nannoplankton, insbesondere Kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner geowissenschaftliche Abhandlungen, E 4, 53 p.Google Scholar
Janofske, D. 1996. Ultrastructure types in Recent “calcispheres.” Bulletin de l'Institut océanographique, Monaco, 14(4):295303.Google Scholar
Janofske, D. 2000. Scrippsiella trochoidea and Scrippsiella regalis, nov. comb. (Peridiniales, Dinophyceae): a comparison. Journal of Phycology, 36:178189.Google Scholar
Kamptner, E. 1927. Beitrag zur Kenntnis adriatischer Coccolithophoriden. Archiv für Protistenkunde, 58:173184.Google Scholar
Kamptner, E. 1956. Thoracosphaera Deflandrei nov. spec., ein bemer-kenswertes Kalkflagellaten-Gehäuse aus dem Eocän von Donzacq (Dep. Landes, Frankreich). Österreichische Botanische Zeitschrift, 103:448456.CrossRefGoogle Scholar
Kamptner, E. 1963. Coccolithineen-Skelettreste aus Tiefseeablagerungen des Pazifischen Ozeans. Annalen des Naturhistorischen Museums Wien, 66:139204.Google Scholar
Karwath, B. 2000. Ecological studies on living and fossil calcareous dinoflagellates of the equatorial and tropical Atlantic Ocean. Berichte, Fachbereich Geowissenschaften, Universität Bremen, 152, 175 p.Google Scholar
Keller, B. M. 1946. The foraminifera of the Upper Cretaceous deposits, in the Sotchi region. Bulletin de la Societé des Naturalistes de Moscou, 51(3):83108.Google Scholar
Keupp, H. 1977. Ultrafazies und Genese der Solnhofener Plattenkalke (Oberes Malm, Südliche Frankenalb). Abhandlungen der Naturhistorischen Gesellschaft Nürnberg, 37:6169.Google Scholar
Keupp, H. 1978. Calcisphaeren des Untertithons der Südlichen Frankenalb und die systematische Stellung von Pithonella Lorenz 1901. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1978(2):8798.Google Scholar
Keupp, H. 1979a. Lower Cretaceous Calcisphaerulidae and their relationship to calcareous dinoflagellate cysts. Bulletin du Centre de Recherches Exploration Production Elf-Aquitaine, 3(2):651663.Google Scholar
Keupp, H. 1979b. Calciodinelloidea aus der Blätterton-Fazies des nordwestdeutschen Unter-Barremium. Bericht der Naturhistorischen Gesellschaft Hannover, 122:769.Google Scholar
Keupp, H. 1980. Calcigonellum Deflandre 1948 und Echinodinella n. gen. (kalkige Dinoflagellaten-Zysten) aus der nordwestdeutschen Unter-Kreide. Facies, 2:123148.Google Scholar
Keupp, H. 1981. Die kalkigen Dinoflagellaten-Zysten der borealen Unter-Kreide (Unter-Hauterivium bis Unter Albium). Facies, 5, 190 p.Google Scholar
Keupp, H. 1982. Die kalkigen Dinoflagellaten-Zysten des späten Apt und frühen Alb in Nordwestdeutschland. Geologisches Jahrbuch, A 65:307363.Google Scholar
Keupp, H. 1984. Revision der kalkigen Dinoflagellaten-Zysten G. Deflandres, 1948. Paläontologische Zeitschrift, 58:931.Google Scholar
Keupp, H. 1987. Die kalkigen Dinoflagellatenzysten des Mittelalb bis Untercenoman von Escalles/Boulonnais (N-Frankreich). Facies, 16:3788.Google Scholar
Keupp, H. 1990. Eine neue pithonelloide Dinoflagellaten-Kalkzyste aus der Oberkreide von South Dakota/USA. Facies, 22:4758.Google Scholar
Keupp, H. 1991a. Kalkige Dinoflagellaten-Zysten aus dem Eibrunner Mergel (Cenoman-Turon-Grenzbereich) bei Bad Abbach/Süddeutsch-land. Berliner Geowissenschaftliche Abhandlungen, A 134:127145.Google Scholar
Keupp, H. 1991b. Fossil calcareous dinoflagellate cysts, p. 267286. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin.Google Scholar
Keupp, H. 1992a. Calcareous dinoflagellate cysts from the Lower Cretaceous of Hole 761C, Wombat Plateau, eastern Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 122:497509.Google Scholar
Keupp, H. 1992b. Die Flora kalkiger Dinoflagellaten-Zysten im mittleren Apt (Gargas) der Kernbohrung Himstedt 3 bei Hoheneggelsen/Niedersachsen. Berliner Geowissenschaftliche Abhandlungen, E 3:121169.Google Scholar
Keupp, H. 1993. Kalkige Dinoflagellaten-Zysten in Hell-Dunkel-Rhythmen des Ober-Hauterive/Unter-Barrême NW-Deutschlands. Zitteliana, 20:2539.Google Scholar
Keupp, H. 1995a. Vertical distribution of calcareous dinoflagellate cysts of the Middle Aptian core section Hoheneggelsen KB 3 borehole, Lower Saxony, Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 196(2):221233.Google Scholar
Keupp, H. 1995b. Die kalkigen Dinoflagellaten-Zysten aus dem Ober-Alb der Bohrung Kirchrode 1/91 (zentrales Niedersächsisches Becken, NW Deutschland). Berliner Geowissenschaftliche Abhandlungen, E 16:155199.Google Scholar
Keupp, H., and Ilg, A. 1989. Die kalkigen Dinoflagellaten im Ober-Callovium und Oxfordium der Normandie/ Frankreich. Berliner Geowissenschaftliche Abhandlungen, A 106:165205.Google Scholar
Keupp, H., and Kienel, U. 1994. Wandstrukturen bei Pithonelloideae (Kalkige Dinoflagellaten-Zysten): Biomineralisation und systematische Konsequenzen. Abhandlungen der Geologischen Bundesanstalt, 50:197217.Google Scholar
Keupp, H., and Kohring, R. 1993. Kalkige Dinoflagellaten-Zysten aus dem Ober-Miozän von El Medhi (Algerien). Berliner Geowissenschaftliche Abhandlungen, E 9:2543.Google Scholar
Keupp, H., and Kohring, R. 1994. Kalkige Dinoflagellaten-Zysten aus dem Rupelton (Mittel-Oligozän) des Mainzer Beckens und der Niederrheinischen Bucht. Mainzer geowissenschaftliche Mitteilungen, 23:159184.Google Scholar
Keupp, H., and Kohring, R. 1999. Kalkige Dinoflagellaten-Zysten aus dem Obermiozän (NN 11) W von Rethymnon (Kreta). Berliner Geowissenschaftliche Abhandlungen, E 30:3353.Google Scholar
Keupp, H., and Kowalski, F.-U. 1992. Die kalkigen Dinoflagellaten-Zysten aus dem Alb von Folkestone/SE-England. Berliner Geowissenschaftliche Abhandlungen, E 3:211251.Google Scholar
Keupp, H., and Mutterlose, J. 1984. Organismenverteilung in den D-Beds von Speeton (Unterkreide, England) unter besonderer Berücksichtigung der kalkigen Dinoflagellaten-Zysten. Facies, 10:153178.Google Scholar
Keupp, H., and Mutterlose, J. 1994. Calcareous phytoplankton from the Barremian/Aptian boundary interval from NW Germany. Cretaceous Research, 15(6):739763.Google Scholar
Keupp, H., and Neumann, C. 1996. Calcareous dinoflagellate cysts from the Albian boreholes Kirchrode I and II (central part of the Lower Saxonian Basin, NW Germany): Factors controlling their vertical succession, p. 1722. In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenic Sedimentation, II: Cretaceous Sedimentation. Research Reports. Göttinger Arbeiten zur Geologie und Paläontologie, Sonderband, 3.Google Scholar
Keupp, H., and Versteegh, G. 1989. Ein neues systematische Konzept für kalkige Dinoflagellaten-Zysten der Subfamilie Orthopithonelloideae Keupp 1987. Berliner Geowissenschaftliche Abhandlungen, A 106:207219.Google Scholar
Keupp, H., Kohring, R., and Kowalski, F.-U. 1992. Neue Arten der Gattung Ruegenia Willems 1992 (kalkige Dinoflagellaten-Zysten) aus Kreide und Tertiär. Berliner geowissenschaftliche Abhandlungen, E 3:191209.Google Scholar
Keupp, H., Monnet, B., and Kohring, R. 1991. Morphotaxa bei kalkigen Dinoflagellaten-Zysten und ihre problematische Systemati-sierung. Berliner Geowissenschaftliche Abhandlungen, A 134:161185.Google Scholar
Kienel, U. 1994. Die Entwicklung der kalkigen Nannofossilien und der kalkigen Dinoflagellaten-Zysten an der Kreide/Tertiär-Grenze in West-brandenburg im Vergleich mit Profilen in Nordjütland und Seeland (Dänemark). Berliner Geowissenschaftliche Abhandlungen, E 12, 87 p.Google Scholar
Kohring, R. 1993a. Kalkdinoflagellaten aus dem Mittel- und Obereozän von Jütland (Dänemark) und dem Pariser Becken (Frankreich) im Vergleich mit anderen Tertiär-Vorkommen. Berliner Geowissenschaftliche Abhandlungen, E 6, 164 p.Google Scholar
Kohring, R. 1993b. Kalkdinoflagellaten-Zysten aus dem unteren Pliozän von E-Sizilien. Berliner Geowissenschaftliche Abhandlungen, E 9:1523.Google Scholar
Kohring, R. 1997. Calcareous dinoflagellate cysts from the Blue Clay formation (Serravallian, Late Miocene) of the Maltese Island. Neues Jahrbuch für Geololgie und Paläontologie, Monatshefte, 1997(3):151164.Google Scholar
Krasheninnikov, V. A., and I. A. Basov. 1983. Cretaceous calcisphaerulids of the Falkland Plateau, Leg 71, Deep Sea Drilling Project. Initial Reports DSDP, 71:977997.Google Scholar
Lentin, J. K. 1983. Williamsidinium banksianum gen. et sp. nov., a new peridinioid dinoflagellate cyst from the Maastrichtian of Banks Island, N. W. T., Canada. Palynology, 7:147151.Google Scholar
Lentin, J. K. 1985. Canningiaturrita Brideaux, 1977, as the lining of a peridinioid calcareous dinoflagellate. American Association of Stratigraphic Palynologists, Newsletter, 18(3):89.Google Scholar
Lentin, J. K., and Williams, G. L. 1976. A monograph of fossil peridinioid dinoflagellate cysts. Bedford Institute of Oceanography, Report Series, BI-R-75-16, 237 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1985. Fossil dinoflagellates: index to genera and species 1985 edition. Canadian Technical Report of Hydrography and Ocean Sciences, 60, 449 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1989. Fossil dinoflagellates: index to genera and species, 1989 edition. American Association of Stratigraphic Palynologists, Contributions Series, 20, 473 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1993. Fossil dinoflagellates: index to genera and species. 1993 edition. American Association of Stratigraphic Palynologists, Contributions Series, 28, 856 + viii p.Google Scholar
Lewis, J. 1991. Cyst-theca relationship in Scrippsiella (Dinophyceae) and related orthoperidinioid genera. Botanica Marina, 34:91106.Google Scholar
Loeblich, A. R. III. 1965. Dinoflagellate nomenclature. Taxon, 14:1518.Google Scholar
Loeblich, A. R. III. 1976. Dinoflagellate evolution: speculations and evidence. Journal of Protozoology, 23:1328.Google Scholar
Lorenz, T. 1902. Geologische Studien im Grenzgebiete zwischen helvetischer und ostalpiner Fazies. Berichte der Naturforschenden Gesellschaft zu Freiburg, 12:3495.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, p. 739785. In Farinacci, A. (ed.), Proceedings of the 2nd Planktonic Conference, Roma, 1970, 2.Google Scholar
Masters, B. A., and Scott, R. W. 1978. Microstructure, affinities and systematics of Cretaceous calcispheres. Micropaleontology, 24:210221.Google Scholar
Matsuoka, K. 1985. Archeopyle structure in modern gymnodinialean dinoflagellate cysts. Review of Palaeobotany and Palynology, 44:217231.Google Scholar
Matsuoka, K. 1988. Cyst-theca relationships in the diplopsalid group (Peridiniales, Dinophyceae). Review of Palaeobotany and Palynology, 56:95122.Google Scholar
Meier, K. J. S., and Willems, H. 2003. Calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea: distribution patterns and influence of main environmental gradients. Marine Micropaleontology, 48:321354.Google Scholar
Meier, K. J. S., Janofske, D., and Willems, H. 2002. New calcareous dinoflagellates (Calciodinelloideae) from the Mediterranean Sea. Journal of Phycology, 38:602615.Google Scholar
Monnet, B. 1990. Organische Phragmen der kalkigen, unterkretazischen Dinoflagellaten-Zysten Echinodinella erinacea Keupp 1980 und Praecalcigonellum Keupp & Versteegh 1989. Berliner geowissenschaftliche Abhandlungen, A 124:5169.Google Scholar
Monnet, B. 1992. Organische Komponeneten der Zystenwand von Praecalcigonellum polymorphum (Keupp, 1980) (Calciodinellaceae, Orthopithonelloideae) aus der Unterkreide NW-Deutschlands. Documenta Naturae, 69:2226.Google Scholar
Monnet, B. 1993. Wechselseitige Beziehungen organischer und kalzitischer Komponenten beim Wandungsaufbau orthopithonelloider und obliquipithonelloider Calciodinellaceae Deflandre 1947. Berliner Geowissenschaftliche Abhandlungen, E 7, 75 p.Google Scholar
Montresor, M., and Zingone, A. 1988. Scrippsiella precaria sp. nov. (Dinophyceae), a marine dinoflagellate from the Gulf of Naples. Phycologia, 27:387394.Google Scholar
Montresor, M., Janofske, D., and Willems, H. 1997. The cyst-theca relationship in Calciodinellum operosum emend. (Peridiniales, Dinophyceae) and a new approach for the study of calcareous cysts. Journal of Phycology, 33:122131.Google Scholar
Montresor, M., Zingone, A., and Marino, D. 1993. The calcareous resting cyst of Pentapharsodinium tyrrhenicum comb. nov. (Dinophyceae). Journal of Phycology, 29:223230.Google Scholar
Montresor, M., Montesarchio, E., Marino, D., and Zingone, A. 1994. Calcareous dinoflagellate cysts in marine sediments of the Gulf of Naples (Mediterranean Sea). Review of Palaeobotany and Palynology, 84:4556.Google Scholar
Neumann, C. 1999. Diversität- und Häufigkeitsmuster kalkiger Dinoflagellatenzysten aus dem Alb (Unterkreide) der Bohrung Krchrode II (Niedersächsisches Becken, NW-Deutschland) und ihre möglichen Steuerungsmechanismen. Berliner Geowissenschaftliche Abhandlungen, E 31, 79 p.Google Scholar
Norris, G. 1978. Phylogeny and a revised supra-generic classification for Triassic-Quaternary organic-walled dinoflagellate cysts (Pyrrhophyta), Pt. I, Cyst terminology and assessment of previous classifications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 155:300317.Google Scholar
Nowak, W. 1968. Stomiosferidy warstw cieszynskich (kimeryd-hoteryw) polskiego slaska Cieszynskiego i ich znaczenie stratygrapficzne. Rocznik Polskie Towarzystwo Geologiczne, 38(2–3):275327.Google Scholar
Olsson, R. K., and Youssefnia, I. 1979. Cretaceous Calcisphaerulidae from New Jersey. Journal of Paleontology, 53:10851093.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der deutschen Botanischen Gesellschaft Berlin, 32:136160.Google Scholar
Pflaumann, U., and Krasheninnikov, V. A. 1978. Cretaceous calcisphaerulids from DSDP Leg 41, eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project, 41:817839.Google Scholar
Pospelova, V., and Head, M. J. 2002. Islandinium brevispinosum sp. nov. (Dinoflagellata), a new organic-walled dinoflagellate cyst from modern estuarine sediments of New England (USA). Journal of Phycology, 38:593601.Google Scholar
Řehánek, J. 1985. Cadosinidae WANNER and Stomiosphaeridae WANNER in the Mesozoic limestones of southern Moravia. Časopis pro Mineralogii a Geologii, 30(4):367380.Google Scholar
Řehánek, J., and Mišík, M. 1991. New upper Cretaceous cyst Pithonella siniformis n. sp. (Calciodinellaceae) from eastern Algeria. Geologica Carpathica, 42(2):111116.Google Scholar
Rögl, F. 1976. Danian Calcisphaerulidae of DSDP Leg 35, Site 323, southeast Pacific Ocean. Initial Reports of the Deep Sea Drilling Project, 35:701711.Google Scholar
Shipboard Scientific Party. 1989. Explanatory Notes. Proceedings of the Ocean Drilling Program, Scientific Results, 120:2556.Google Scholar
Shipboard Scientific Party. 1990. Explanatory Notes. Proceedings of the Ocean Drilling Program, Scientific Results, 122:1738.Google Scholar
Stradner, H. 1961. Vorkommen von Nannofossilien im Mesozoikum und Alttertiär. Erdöl-Zeitschrift, 3:7788.Google Scholar
Stover, L. E., Brinkhuis, H., Damassa, S. P., de Verteuil, L., Helby, R. J., Monteil, E., Partridge, A. D., Powell, A. J., Riding, J. B., Smelror, M., and Williams, G. L. 1996. Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes, p. 641750. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Streng, M., Hildebrand-Habel, T., and Willems, H. 2002. Revision of the genera Sphaerodinella Keupp and Versteegh, 1989 and Orthopithonella Keupp in Keupp and Mutterlose, 1984 (Calciodinelloideae, calcareous dinoflagellate cysts). Journal of Paleontology, 76:397407.Google Scholar
Streng, M., Hildebrand-Habel, T., and Willems, H.In press. Long-term evolution of calcereous dinoflagellate associations since the Late Cretaceous. Journal of Nannoplankton Research.Google Scholar
Taugourdeau-Lantz, J., and Rosset, C. 1966. Sur un nouveau microfossile incertae sedis de l'Oligocène du bassin de Narbonne. Revue de Micropaléontologie, 9:186191.Google Scholar
Versteegh, G. J. M. 1993. New Pliocene and Pleistocene calcareous dinoflagellate cysts from southern Italy and Crete. Review of Palaeobotany and Palynology, 78:353380.Google Scholar
Vink, A., Zonneveld, K. A. F., and Willems, H. 2000. Distribution of calcareous dinoflagellate cysts in surface sediments of the western equatorial Atlantic Ocean, and their potential use in palaeoceanography. Marine Micropaleontology, 38:149180.Google Scholar
von Stein, F. R. 1883. Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet, 3. Abtheilung, 2. Hälfte. Einleitung und Erklärung der Abbildungen. Wilhelm Engelmann, Leipzig, 30 p.Google Scholar
Wall, D., and Dale, B. 1968. Quaternary calcareous dinoflagellates (Calciodinellideae) and their natural affinities. Journal of Paleontology, 42:13951408.Google Scholar
Wendler, J., Wendler, I., and Willems, H. 2001. Orthopithonella collaris sp. nov., a new calcareous dinoflagellate cyst from the K/T boundary (Fish Clay, Stevns Klint/Denmark). Review of Palaeobotany and Palynology, 115:6977.Google Scholar
Willems, H. 1985. Tetramerosphaera lacrimula, eine intern gefächerte Calcisphaere aus der Ober-Kreide. Senckenbergiana Lethaea, 66:177201.Google Scholar
Willems, H. 1988. Kalkige Dinoflagellaten-Zysten aus der oberkreta-zischen Schreibkreide-Fazies N-Deutschlands (Coniac bis Maastricht). Senckenbergiana Lethaea, 68:433477.Google Scholar
Willems, H. 1990. Tetratropis, eine neue Kalkdinoflagellaten-Gattung (Pithonelloideae) aus der Ober Kreide von Lägerdorf (N-Deutschland). Senckenbergiana Lethaea, 70:239257.Google Scholar
Willems, H. 1992. Kalk-Dinoflagellaten aus dem Unter-Maastricht der Insel Rügen. Zeitschrift für geologische Wissenschaften, 20:155178.Google Scholar
Willems, H. 1994. New calcareous dinoflagellates from the Upper Cretaceous white chalk of northern Germany. Review of Palaeobotany and Palynology, 84:5772.Google Scholar
Willems, H. 1995. Praecalcigonellum duopylum n. sp., a new calcareous dinoflagellate cyst from the lowermost Danian (Biantholithus sparsus Zone) of the Geulhemmerberg Section (South Limburg, The Netherlands). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 198:141152.Google Scholar
Willems, H. 1996. Calcareous dinocysts from the Geulhemmerberg K/ T boundary section (Limburg, SE Netherlands). Geologie en Mijn-bouw, 75:215231.Google Scholar
Williams, G. L., Fensome, R. A., Miller, M., and Sarjeant, W. A. S. 2000. A glossary of the terminology applied to dinoflagellates, acritarchs, and prasinophytes, with emphasis on fossils (third edition). American Association of Stratigraphic Palynologists, Contributions Series, 37, 365 p.Google Scholar
Williams, G. L., Lentin, J. K., and Fensome, R. A. 1998. The Lentin and Williams index of fossil dinoflagellates, 1998 edition. American Association of Stratigraphic Palynologists, Contributions Series, 34, 817 p.Google Scholar
Williams, G. L., Sarjeant, W. A. S., and Kidson, E. J. 1978. A glossary of the terminology applied to dinoflagellate amphiesmae and cysts and acritarchs: 1978 edition. American Association of Stratigraphic Palynologists, Contributions Series, 2A, 121 p.Google Scholar
Wise, S. W., and Wind, F. H. 1977. Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, southwest Atlantic sector of the Southern Ocean. Initial Reports of the Deep Sea Drilling Project, 36:369492.Google Scholar
Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., van Niel, B. E., Romein, A. J. T., and von Salis, K. 1997. Guidelines for coccolith and calcareous nannofossil terminology. Palaeontology, 40:875912.Google Scholar
Zügel, P. 1994. Verbreitung kalkiger Dinoflagellaten-Zysten im Cenoman/Turon von Westfrankreich und Norddeutschland. Courier Forschungsinstitut Senckenberg, 176:1159.Google Scholar