Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-10T06:13:11.138Z Has data issue: false hasContentIssue false

Permian nonmarine invertebrate trace fossils from southern Patagonia, Argentina: Ichnologic signatures of substrate consolidation and colonization sequences

Published online by Cambridge University Press:  20 May 2016

Luis Alberto Buatois
Affiliation:
Kansas Geological Survey, 1930 Constant Ave, Campus West, The University of Kansas, Lawrence 66047
Guillermo Jalfin
Affiliation:
YPF, Sede Central, Av. Roque Saenz Peña 777
Florencio G. Aceñolaza
Affiliation:
1008 Buenos Aires, Argentina, and CONICET, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 San Miguel de Tucumán, Argentina

Abstract

Floodplain deposits of the Permian Laguna Polino Member (La Golondrina Formation) of southern Patagonia, Argentina, contain a moderate diversity invertebrate ichnofauna. This member consists of up to 500 m of ripple cross-laminated and trough cross-bedded, medium-grained sandstone and mudstone, with some conglomerate. It records sedimentation in braided fluvial environments with moderate channel sinuosity. The system was characterized by the development of multistory channels, transverse or linguoid bars, and levees. At the Laguna Grande locality, trace fossils were recovered from current-rippled, very fine-grained muddy sandstone beds formed in a pond adjacent to the levee. The ichnofauna consists of a mixed pascichnia, repichnia, and domichnia assemblage composed of Cochlichnus anguineus, Ctenopholeus kutscheri, Helminthoidichnites tenuis, Helminthopsis abeli, and Palaeophycus striatus. These low-energy ponds were more suitable for development of benthic fauna and preservation of ichnofossils than were fluvial channels and point bars. Accordingly, preservation of distinct trace fossil-bearing pond horizons within an otherwise unfossiliferous fluvial succession may be regarded as taphonomic and colonization windows. The colonization history of these beds can be traced through the study of cross-cutting and substrate relationships. Detailed ichnologic analysis suggests the following succession: 1) large Cochlichnus tracemakers colonizing transitional soupgrounds to softgrounds; 2) large and small Cochlichnus, Helminthopsis and Helminthoidichnites formed in softgrounds; and 3) Palaeophycus and Ctenopholeus emplaced in transitional soft to firm substrates. The colonization sequence suggests an ecologic replacement of a surface mobile fauna dominated by nematodes, nematomorphs, and larval insects by a more stationary infauna consisting of adult insects as a result of increasing consolidation. Presence of Ctenopholeus is significant because it represents the second report of this ichnogenus and the first from nonmarine settings.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G., and Buatois, L. A. 1993. Non-marine perigond-wanic trace fossils from the Late Paleozoic of Argentina. Ichnos, 2:183201.CrossRefGoogle Scholar
Alexandrescu, G., and Brustur, T. 1987. Structures sédimentaires biogenes (trace fossils) du flysch des Carpathes Orientales (III-eme partie). Dǎri de Seama Institul de Geologie si Geofizicǎ, 72-73/3:520.Google Scholar
Archangelsky, S. 1958. Las Glossopterideas del Bajo de la Leona. Revista de la Asociación Geológica Argentina, 12:135164.Google Scholar
Archangelsky, S., and Cuneo, R. 1984. Zonación del Pérmico continental argentino sobre la base de sus plantas fósiles. Actas III Congreso Latinoamericano de Paleontología, México, 1:143153.Google Scholar
Archer, A. W., and Maples, C. G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontology, 58:448466.Google Scholar
Arrondo, O. G. 1972. Síntesis del conocimiento de las tafofloras del Paleozoico superior de Argentina. Anales Academia Brasileira do Ciencias, 44 (suplement):3750.Google Scholar
Badve, R. M. 1987. A reassessment of the stratigraphy of Bagh Beds, Barwah area, Madhya Pradesh, with description of trace fossils. Journal of the Geological Society of India, 30:106120.Google Scholar
Bown, T. M. 1982. Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 40:255309.Google Scholar
Bromley, R. G. 1990. Trace Fossils. Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.CrossRefGoogle Scholar
Bromley, R. G., and Asgaard, U. 1991. Ichnofacies: a mixture of taphofacies and biofacies. Lethaia, 24:153163.Google Scholar
Buatois, L. A., and Mángano, M. G. 1993a. Trace fossils from a Carboniferous turbidite lake: implications for the recognition of additional nonmarine ichnofacies. Ichnos, 2:237258.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. 1993b. The ichnotaxonomic status of Plangtichnus and Treptichnus . Ichnos, 2:217224.Google Scholar
Buatois, L. A., and Mángano, M. G. 1993c. The paleoenvironmental and paleoecological significance of turbiditic lake ichnocoenoses from the Late Carboniferous of the Paganzo Basin. Compte Rendu XII International Congress on Carboniferous and Permian Geology and Stratigraphy, Buenos Aires, 2:409420.Google Scholar
Buatois, L. A., and Mángano, M. G. 1993d. Ecospace utilization, paleoenvironmental trends, and the evolution of early non-marine biotas. Geology, 21:595598.2.3.CO;2>CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. 1995a. The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos, 4:141151.Google Scholar
Buatois, L. A., and Mángano, M. G. 1995b. Post glacial lacustrine event sedimentation in an ancient mountain setting: Carboniferous Lake Malanzán (Western Argentina). Journal of Paleolimnology, 12:122.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Wu, X., and Zhang, G. 1996a. Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (Central China) and their environmental and evolutionary significance. Ichnos, 4:287303.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. and Aceñolaza, F. G. 1996b. Icnofaunas paleozoicas en sustratos firmes no marinos: Evidencias del Pérmico de la cuenca Paganzo. Ameghiniana (in press).Google Scholar
Buckman, J. O. 1995. A comment on annulate forms of Palaeophycus Hall 1847: with particular reference to P. “annulatus” sensu Pemberton and Frey 1982, and the erection of P. crenulatus ichnosp. nov. Ichnos, 4:131140.Google Scholar
Cant, D. J., and Walker, R. G. 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25:625648.Google Scholar
Chamberlain, C. K. 1975. Recent lebensspurren in nonmarine aquatic environments, p. 431458. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Crimes, T. P., and Anderson, M. M. 1985. Trace fossils from Late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Curran, H. A. 1985. The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown Formation of Delaware, U.S.A., p. 261276. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication, 35. Tulsa.Google Scholar
D'Alessandro, A., Ekdale, A. A., and Picard, M. D. 1987. Trace fossils in fluvial deposits of the Duchesne River Formation (Eocene), Uinta Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 61:285301.Google Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. G., Okolo, S. A., and Pollard, J. E. 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the central Pennine Basin, England, p. 99149. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication, 35. Tulsa.Google Scholar
Ekdale, A. A. 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50:6381.Google Scholar
Ekdale, A. A., and Picard, M. D. 1985. Trace fossils in a Jurassic eolianite, Entrada Sandstone, Utah, U.S.A., p. 312. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. SEPM Special Publication, 35. Tulsa.Google Scholar
Elliott, R. E. 1985. An interpretation of the trace fossil Cochlichnus kochi (Ludwig) from the East Pennine Coalfield of Britain. Proceedings of the Yorkshire Geological Society, 45:183187.CrossRefGoogle Scholar
Fillion, D., and Pickerill, R. K. 1990. Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, 7:1119.Google Scholar
Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington. Part 2-5. Transactions of the New York Agricultural Society, 9:753944.Google Scholar
Fordyce, R. E. 1980. Trace fossils from Ohika Formation (Pororari Group, Lower Cretaceous), lower Buller Gorge, Buller, New Zealand. New Zealand Journal of Geology and Geophysics, 23:121124.Google Scholar
Forsythe, R. 1982. The Late Paleozoic to Early Mesozoic evolution of southern South America: a plate tectonic interpretation. Journal of the Geological Society of London, 139:671682.CrossRefGoogle Scholar
Fregenal Martinez, M. A., Buatois, L. A., and Mángano, M. G. 1995. Invertebrate trace fossils from Las Hoyas fossil site (Serrania de Cuenca, Spain). Paleoenvironmental interpretations. Extended Abstracts II International Symposium on Lithographic Limestones, Lleida-Cuenca:6770.Google Scholar
Frey, R. W., and Pemberton, S. G. 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33:72115.Google Scholar
Frey, R. W., and Pemberton, S. G. 1987. The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 35:333357.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.Google Scholar
Frey, R. W., Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Friend, P. F., Slater, M. J., and Williams, R. C. 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Journal of the Geological Society of London, 136:3946.Google Scholar
Genise, J. F., and Bown, T. M. 1994. New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos, 3:107117.CrossRefGoogle Scholar
Ghare, M. A., and Kulkarny, K. G. 1986. Jurassic ichnofauna of Kutch—II. Wagad Region. Biobigyanam, 12:4462.Google Scholar
Gierlowski-Kordesch, E. 1991. Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos, 1:221232.Google Scholar
Goldring, R. 1995. Organisms and the substrate: response and effect, p. 151180. In Bosence, D. W. J., and Allison, P. A. (eds.), Marine Paleoenvironmental Analysis from Fossils. Geological Society Special Publication, 83.Google Scholar
Gradzinski, R., and Uchman, A. 1994. Trace fossil from interdune deposits—an example from the Lower Triassic aeolian Tumlin Sandstone, central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 108:121138.Google Scholar
Hall, J. 1847. Palaeontology of New York, Volume I. State of New York, Albany, 338 p.Google Scholar
Hall, J. 1852. Palaeontology of New York, Volume II. Containing Descriptions of the Organic Remains of the Lower Division of the New York System (Equivalent in Part to the Lower Silurian Rocks of Europe). C. van Benthuysen, Albany, 362 p.Google Scholar
Han, Y., and Pickerill, R. K. 1995. Taxonomic review of the ichnogenus Helminthopsis Heer 1877 with a statistical analysis of selected ichnospecies. Ichnos, 4:83118.Google Scholar
Häntzschel, W. 1975. Trace fossil and Problematica, p. 1269. In Teichert, C., (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1. Geological Society of America and University of Kansas Press, 269 p. Google Scholar
Hasiotis, S. T., and Bown, T. M., 1992. Invertebrate trace fossils: the backbone of continental ichnology, p. 64104. In Maples, C. G., and West, R. R. (eds.), Trace Fossils. Short Courses in Paleontology, 5. The Paleontological Society.Google Scholar
Heer, O. 1877. Florafossilis Helvetiae. Die vorweltliche Flora der Schweiz. J. Wurster & Co., Zurich, 182 p.Google Scholar
Herve, F., Davidson, J., Godoy, E., Mpodozis, C. M., and Covacevich, V. 1981. The Late Paleozoic in Chile: stratigraphy, structure and possible tectonic framework. Annales Academia Brasileira do Ciencias, 53:361373.Google Scholar
Hitchcock, E. 1858. Ichnology of New England. A Report on the Sandstone of the Connecticut Valley, Especially its Fossil Footprints. W. White, Boston, 220 p.Google Scholar
Hofmann, H.-J. 1983. Early Cambrian problematic fossils near June Lake, Mackenzie Mountains, N.W.T. Canadian Journal of Earth Sciences, 20:15131520.Google Scholar
Hofmann, H.-J., and Patel, I. M. 1989. Trace fossils from the type “Etcheminian Series” (Lower Cambrian Ratcliffe Brook Formation), Saint John area, New Brunswick, Canada. Geological Magazine, 126:139157.CrossRefGoogle Scholar
Hofmann, H.-J., Cecile, M. P., and Lane, L. S. 1994. New occurrences of Oldhamia and other trace fossils in the Cambrian of the Yukon and Ellesmere Island, arctic Canada. Canadian Journal of Earth Sciences, 31:767782.Google Scholar
Jalfin, G. A. 1988. Estratigrafia y paleogeografia de las Formaciones La Golondrina y La Juanita, Pérmico de la Provincia de Santa Cruz y su relación con rocas de edad similar en las Islas Malvinas. Unpublished Doctoral thesis, Universidad Nacional de Tucumán, San Miguel de Tucumán, 352 p.Google Scholar
Jalfin, G. A., and Herbst, R. 1995. La flora triásica del Grupo El Tranquilo, provincia de Santa Cruz (Patagonia). Estratigrafia. Ameghiniana, 32:211229.Google Scholar
Keighley, D. G., and Pickerill, R. K. 1995. The ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations. Ichnos, 3:301309.Google Scholar
Ksiazkiewicz, M. 1968. O niektórych problematykach z flissu Karpat Polskich (Czesc): Polskiego Towarzystwa Geologicznego W. Krakówie, 38:317.Google Scholar
Ksiazkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Paleontologica Polonica, 36:1200.Google Scholar
MacNaughton, R. B., and Pickerill, R. K. 1995. Invertebrate ichnology of the nonmarine Lepreau Formation (Triassic), southern New Brunswick, eastern Canada. Journal of Paleontology, 69:160171.Google Scholar
Maillard, G. 1887. Considerations sur les fossiles décrits comme Algues. Société Paléontologique de la Suisse, Mémoire, 14:140.Google Scholar
Mángano, M. G., Buatois, L. A., and Claps, G. L. 1996. Grazing trails formed by soldier fly larvae (Diptera: Stratiomyidae) and their paleoenvironmental and paleoecological implications for the fossil record. Ichnos, 4:163167.CrossRefGoogle Scholar
Mángano, M. G., Buatois, L. A., and Acenolaza, G. F. In press. Trace fossils and sedimentary facies from a Late Cambrian-Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions. Ichnos.Google Scholar
Maples, C. G., and Archer, A. W. 1989. The potential of Paleozoic nonmarine trace fossils for paleoecological interpretations. Paleogeography, Palaeoclimatology, Palaeoecology, 73:185195.CrossRefGoogle Scholar
Mc Cann, T. 1993. A Nereites ichnofacies from the Ordovician–Silurian Welsh basin. Ichnos, 3:3956.Google Scholar
Mc Cann, T. and Pickerill, R. K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62:330348.Google Scholar
Metz, R. 1987. Sinusoidal trail formed by a recent biting midge (Family Ceratopogonidae): Trace fossil implications. Journal of Paleontology, 61:312314.Google Scholar
Metz, R. 1995. Ichnologic study of the Lockatong Formation (Late Triassic), Newark Basin, southeastern Pennsylvania. Ichnos, 4:4351.Google Scholar
Miall, A. D. 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Review, 22:261308.CrossRefGoogle Scholar
Miller, G. D. 1986. The sediments and trace fossils of the Rough Rock Group on Cracken Edge, Derbyshire. Mercian Geologist, 10:189202.Google Scholar
Miller, S. A., and Dyer, C. B. 1878. Contributions to Paleontology, No. 2. Cincinnati, private publication. 11 p.Google Scholar
Moussa, M. T. 1970. Nematode fossil trails from the Green River Formation (Eocene) in the Uinta basin, Utah. Journal of Paleontology, 44:304307.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie mountains, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Orlowski, S. 1989. Trace fossils in the Lower Cambrian sequence in the Swietokrzyskie Mountains, Central Poland. Acta Paleontologica Polonica, 34:211231.Google Scholar
Pemberton, S. G., and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. Journal of Paleontology, 56:843871.Google Scholar
Pemberton, S. G., Maceachern, J. A., and Frey, R. W. 1992. Trace fossil facies models: environmental and allostratigraphic significance, p. 4772. In Walker, R. G. (ed.), Facies Models. Response to sea level change. Geological Association of Canada.Google Scholar
Pickerill, R. K. 1981. Trace fossils in a Lower Palaeozoic submarine canyon sequence—the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 17:3659.Google Scholar
Pickerill, R. K. 1992. Carboniferous nonmarine invertebrate ichnocoenoses from southern New Brunswick, eastern Canada. Ichnos, 2:2135.Google Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons Ltd. Chichester.Google Scholar
Pickerill, R. K., and Narbonne, G. M. 1995. Composite and compound ichnotaxa: a case example from the Ordovician of Quebec, eastern Canada. Ichnos, 4:5369.Google Scholar
Pollard, J. E. 1988. Trace fossils in coal-bearing sequences. Journal of the Geological Society, 145:339350.Google Scholar
Pollard, J. E. and Hardy, P. G. 1991. Trace fossils from the Westphalian D of Writhlington Geological Nature Reserve, nr. Radstock, Avon. Proceedings Geological Association, 102:169178.Google Scholar
Pollard, J. E., Steel, R. J., and Undersrud, E. 1982. Facies sequences and trace fossils in lacustrine/fan-delta deposits, Hornelen Basin (M. Devonian), western Norway. Sedimentary Geology, 32:6387.Google Scholar
Rindsberg, A. K. 1994. Ichnology of the Upper Mississippian Hart-selle Sandstone of Alabama, with notes on other Carboniferous formations. Geological Survey of Alabama, Bulletin, 158:1107.Google Scholar
Sadler, C. J. 1993. Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. Journal of Paleontology, 67:240249.Google Scholar
Saporta, G. De. 1872. Paléontologie française ou description des fossiles de la France. 2 sér Végétaux. Plantes Jurassiques. G. Masson, Paris, 1, 506 p.Google Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:413428.Google Scholar
Seilacher, A., and Hemleben, C. 1966. Beitrage zur sedimentation und fossilsfuhrung des Hunsrucksciefers 14. Spurenfauna und Bildungstiefe der Hunsruckschiefer (Unterdevon). Notizblatt des Hessischen Landesamtes fur Bodenforschung zu Wiesbaden, 94:4053.Google Scholar
Smith, R. M. H., Mason, T. R., and Ward, J. D. 1993. Flash-flood sediments and ichnofacies of the Late Pleistocene Homeb Silts, Kuiseb River, Namibia. Sedimentary Geology, 85:579599.Google Scholar
Stanley, K. O., and Fagerstrom, J. A. 1974. Miocene invertebrate trace fossils from a braided river environment, western Nebraska, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 15:6382.Google Scholar
Tasch, P. 1968. A Permian trace fossil from the Antarctic Ohio Range. Kansas Academy of Science, Transactions, 71:3337.Google Scholar
Viera, R., and Pezzuchi, H. 1976. Presencia de sedimentos pérmicos en contacto con rocas del “Complejo Metamórfico” de la Patagonia extrandina, Estancia Dos Hermanos, Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina, 31:281282.Google Scholar
Walker, E. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 76:287297.CrossRefGoogle Scholar
Walter, M. R., Elphinstone, R., and Heys, G. R. 1989. Proterozoic and Early Cambrian trace fossils from the Amadeous and Georgina basins, central Australia. Alcheringa, 13:209256.Google Scholar