Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T11:32:32.946Z Has data issue: false hasContentIssue false

New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus

Published online by Cambridge University Press:  27 December 2018

Steven T. LoDuca*
Affiliation:
Department of Geography and Geology, Eastern Michigan University, Ypsilanti, Michigan 48197, USA

Abstract

Ordovician material from the Platteville Formation (Sandbian) of southern Wisconsin and Big Hill Formation (Katian) of northern Michigan is described that provides novel information about the phylogenetic affinity, taxonomic diversity, and stratigraphic range of the nonbiomineralized taxa Buthograptus, Callithamnopsis, and Chaetocladus. Two new species of Buthograptus, a previously monotypic genus, are erected on the basis of the Platteville Formation material, Buthograptus gundersoni n. sp. and B. meyeri n. sp., and new occurrences of B. laxus are recorded from several localities and two distinct stratigraphic levels within this unit. On the basis of scanning electron microscopic investigation of the material and the fact that each of the three Buthograptus species has a close counterpart in the frond morphology of an extant species of Caulerpa, Buthograptus is interpreted as a member of the green algal order Bryopsidales. New specimens from the Platteville Formation assigned to Callithamnopsis reveal new morphological details for the type species, C. fruticosa (Hall, 1865), aspects of which indicate that the genus belongs to the family Triploporellaceae rather than Seletonellaceae within the green algal order Dasycladales, and Chaetocladus material from the Big Hill Formation includes specimens that are formally assigned to Chaetocladus dubius (Spencer, 1884), a species of dasycladalean alga known previously only from the mid-Silurian of Ontario.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardh, C.A., 1817, Synopsis algarum Scandinaviae: adjecta dispositione universali algarum: Lundae, Ex officina Berlingiana, 135 p.Google Scholar
Bassoullet, J.P., Bernier, P., Deloffre, R., Génot, P., Jaffrezo, M., and Vachard, D., 1979, Essai de classification des Dasycladales en tribus: Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, v. 3, p. 429442.Google Scholar
Belton, G.S., Reine, W.F., Huisman, J.M., Draisma, S.G., Gurgel, D., and Frederico, C., 2014, Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa racemosa–peltata complex (Chlorophyta, Caulerpaceae): Journal of Phycology, v. 50, p. 3254.Google Scholar
Berger, S., and Kaever, M.J., 1992, Dasycladales: An Illustrated Monograph of a Fascinating Algal Order: Stuttgart, Georg Thieme, 247 p.Google Scholar
Cardona-Correa, C., Piotrowski, M.J., Knack, J.J., Graham, L.E., Kodner, R.E., and Geary, D.H., 2016, Peat moss-like vegetative remains from Ordovician carbonates: International Journal of Plant Sciences, v. 177, p. 523538.Google Scholar
Cevik, C., Yokes, M.B., Cavas, L., Erkol, L.I., Derici, O.B., and Verlaque, M., 2007, First report of Caulerpa taxifolia (Bryopsidales, Chlorophyta) on the Levantine coast (Turkey, Eastern Mediterranean): Estuarine, Coastal and Shelf Science, v. 74, p. 549556.Google Scholar
Choi, Y.K., 1998, Sequence stratigraphy and sedimentology of the middle to upper Ordovician Ancell and Sinnipee groups, Wisconsin [Ph.D. dissertation]: Madison, University of Wisconsin, 284 p.Google Scholar
Choi, Y.K., and Simo, J.A., 1998, Ramp facies and sequence stratigraphic models in an epeiric sea: the Upper Ordovician mixed carbonate-siliciclastic Glenwood and Platteville formations, Wisconsin, USA: Geological Society, London, Special Publications, v. 149, p. 437456.Google Scholar
Cope, J.C.W., 2005, Octocorallian and hydroid fossils from the lower Ordovician of Wales: Palaeontology, v. 48, p. 433445.Google Scholar
Dawson, J.W., 1873, Report on the fossil plants of the Lower Carboniferous and Millstone Grit formations of Canada: Geological Survey of Canada, Separate Report no. 430, p. 147.Google Scholar
Dawson, J.W., 1890, On burrows and tracks of invertebrate animals in Palaeozoic rocks and other markings: Quarterly Journal of the Geological Society of London, v. 46, p. 595618.Google Scholar
Deloffre, R., 1988, Nouvelle taxonomie des algues Dasycladales: Bulletin des Centre de Recherches Exploration-Production Elf-Aquitaine, v. 12, p. 165217.Google Scholar
Draisma, S.G.A., Prud'homme van Reine, W.F., Sauvage, T., Belton, G.S., Gurgel, C.F.D., Lim, P.E., and Phang, S.M., 2014, A re-assessment of the infra-generic classification of the genus Caulerpa (Caulerpaceae, Chlorophyta) inferred from a time-calibrated molecular phylogeny: Journal of Phycology, v. 50, p. 10201034.Google Scholar
Elliott, G.F., 1971, A new fossil alga from the English Silurian: Palaeontology, v. 14, p. 637641.Google Scholar
Elliott, G.F., 1982, A possible non-calcified dasycladalean alga from the Carboniferous of England: Bulletin of the British Museum of Natural History (Geology), v. 36, p. 105107.Google Scholar
Fry, W.L., 1983, An algal flora from the Upper Ordovician of the Lake Winnipeg region, Manitoba, Canada: Review of Palaeobotany and Palynology, v. 39, p. 313341.Google Scholar
Geinitz, H.B., 1866, Review J. Hall: Graptolites of the Quebec Group: Neues Jahrbuch für Mineralogie, Geologie und Palaontologie, Jahrgang 1866, p. 121125.Google Scholar
Granier, B., Dias-Brito, D., Bucur, I.I., and Tibana, P., 2012, Brasiliporella, a new mid-Cretaceous dasycladacean genus: the earliest record of the Tribe Batophoreae: Facies, v. 59, p. 207220.Google Scholar
Grant, C.C., 1892, Notes on Silurian fossil plants, Hamilton, Ontario: Journal and Proceedings of the Hamilton Scientific Association, v. 8, p. 2935.Google Scholar
Gümbel, C.W., 1872, Die sogenannten Nulliporen (Lithothamnium und Dactylopora) und ihre Betheiligung an der Zusammensetzung der Kalkgesteine. Zweiter Theil: Die Nulliporen des Thierreichs (Dactyloporideae) nebst Nachtrag zum ersten Theile: Abhandlungen der Mathematisch-Physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften, v. 11, p. 231290.Google Scholar
Gustavson, T.C. and Delevoryas, T., 1992, Caulerpa-like marine alga from Permian strata, Palo Duro Basin, West Texas: Journal of Paleontology, v. 66, p. 160161.Google Scholar
Hall, J., 1858, On the genus Graptolithus: Canadian Naturalist and Geologist and Proceedings of the Natural History Society of Montreal, v. 3, p. 162177.Google Scholar
Hall, J., 1861, Report of the superintendent of the Geological Survey, exhibiting the progress of the work, January 1, 1861 [including descriptions of new species of fossils from the investigations of the Survey]: Madison, E.A. Calkins & Co., 52 p.Google Scholar
Hall, J., 1865, Figures and Descriptions of Canadian Organic Remains; Decade II, Graptolites of the Quebec Group: Montreal, Dawson Bros., 151 p.Google Scholar
Hall, J., 1868, Introduction to the study of the Graptolitidae: New York State Cabinet of Natural History, 20th Annual Report, p. 169240.Google Scholar
Harvey, W.H., 1858, Contributions to a history of the marine algae of North America. Part III. Chlorospermeae: Smithsonian Contributions to Knowledge, v. 10, p. 1140.Google Scholar
Hewitt, R.A., and Birker, I., 1986, The Thallograptus and Diplospirograptus from the Silurian Eramosa Member in Hamilton (Ontario, Canada): Canadian Journal of Earth Sciences, v. 23, p. 849853.Google Scholar
Høeg, O.A., 1927, Dimorphosiphon rectangulare. Preliminary note on a new Codiacea from the Ordovician of Norway: Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo, Matemattikk-Naturvitenskap Klasse, v. 4, p. 115.Google Scholar
Howe, M.A., 1905, Phycological studies—II. New Chlorophyceae, new Rhodophyceae and miscellaneous notes: Bulletin of the Torrey Botanical Club, v. 32, p. 563586.Google Scholar
Johnson, H., 1961, Review of Ordovician algae: Quarterly of the Colorado School of Mines, v. 56, p. 1101.Google Scholar
Kenrick, P., and Li, C.-S., 1998, An early, non-calcified dasycladalean alga from the Lower Devonian of Yunnan Province, China: Review of Palaeobotany and Palynology, v. 100, p. 7388.Google Scholar
Kenrick, P., and Vinther, J., 2006, Chaetocladus gracilis n. sp., a non-calcified Dasycladales from the Upper Silurian of Skåne, Sweden: Review of Palaeobotany and Palynology, v. 142, p. 153160.Google Scholar
Kraft, P., Kraft, J. and Prokop, R.J., 2001, A possible hydroid from the Lower and Middle Ordovician of Bohemia: Alcheringa, v. 25, p. 143154.Google Scholar
Lamsdell, J.C., LoDuca, S.T., Gunderson, G.O., Meyer, R.C., and Briggs, D.E.G., 2017, A new Lagerstätte from the Late Ordovician Big Hill Formation, Upper Peninsula, Michigan: Journal of the Geological Society, v. 174, p. 1822.Google Scholar
Li, X.-X., and Cai, C.-Y., 1978, A type-section of Lower Devonian strata in southwest China with brief notes on the succession and correlation of its plant assemblages: Acta Geologica Sinica, v. 52, p. 112.Google Scholar
LoDuca, S.T., 1990, Medusaegraptus mirabilis as a noncalcified dasyclad alga: Journal of Paleontology, v. 64, p. 469474.Google Scholar
LoDuca, S.T., 1997, The green alga Chaetocladus (Dasycladales): Journal of Paleontology, v. 71, p. 940949.Google Scholar
LoDuca, S.T., and Kramer, A., 2014, Graptolites from the Wheeler and Marjum formations (Cambrian: Series 3) of Utah: Journal of Paleontology, v. 88, p. 403410.Google Scholar
LoDuca, S.T., and Tetreault, D.K., 2017, Ontogeny and reproductive functional morphology of the macroalga Wiartonella nodifera n. gen. n. sp. (Dasycladales, Chlorophyta) from the Silurian Eramosa Lagerstätte of Ontario, Canada: Journal of Paleontology, v. 91, p. 111.Google Scholar
LoDuca, S.T., Kluessendorf, J., and Mikulic, D.G., 2003, A new noncalcified dasycladalean alga from the Silurian of Wisconsin: Journal of Paleontology, v. 77, p. 956962.Google Scholar
LoDuca, S.T., Melchin, M., and Verbruggen, H., 2011, Complex noncalcified macroalgae from the Silurian of Cornwallis Island, Arctic Canada: Journal of Paleontology, v. 85, p. 111121.Google Scholar
LoDuca, S.T., Bykova, N., Wu, M., Xiao, S. and Zhao, Y., 2017, Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: a tale of two floras: Geobiology, v. 15, p. 588616.Google Scholar
Maletz, J., 2017, Graptolite Paleobiology: West Sussex, Wiley-Blackwell, 323 p.Google Scholar
Maletz, J., Steiner, M., and Fatka, O., 2005, Middle Cambrian pterobranchs and the question: What is a graptolite?: Lethaia, v. 38, p. 7385.Google Scholar
Mattox, K.R., and Stewart, K.D., 1984, Classification of the green algae: a concept based on comparative cytology, in Irvine, D.E.G., and John, D.M., eds., Systematics of the Green Algae: London, Academic Press, p. 2972.Google Scholar
Muscente, A.D., and Allmon, W.D., 2013, Revision of the hydroid Plumalina Hall, 1858 in the Silurian and Devonian of New York: Journal of Paleontology, v. 87, p. 710725.Google Scholar
Nitecki, M.H., 1976, Ordovician Batophoreae (Dasycladales) from Michigan: Fieldiana (Geology), v. 35, p. 2940.Google Scholar
Nowak, H., Harvey, T.H.P., Liu, H.P., McKay, R.M., Zippi, P.A., Campbell, D.H., and Servais, T., 2017, Filamentous eukaryotic algae with a possible cladophoralean affinity from the Middle Ordovician Winneshiek Lagerstätte in Iowa, USA: Geobios, v. 50, p. 303309.Google Scholar
Pascher, A., 1931, Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stämme des Pflanzenreiches: Botanisches Centralblatt, Beiheft, v. 48, p. 317332.Google Scholar
Pia, J., 1912, Neue studien über die triadischen Siphoneae verticillatae: Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, v. 25, p. 2581.Google Scholar
Pia, J., 1920, Die Siphoneae verticillatae vom Karbon bis zur Kreide: Abhandlungender Zoologisch-Botanischen Gesellschaftin Wien, v. 11, p. 1263.Google Scholar
Pia, J., 1927, Thallophyta, in Hirmer, M., ed., Handbuch der Paläobotanik, v. 1: Munich, Oldenbourg, p. 31136.Google Scholar
Pohlman, J., 1886, Fossils from the Waterlime Group near Buffalo: Bulletin of the Buffalo Society of Natural History, v. 5, p. 2333.Google Scholar
Reichenbach, H.G.L., 1828, Conspectus Regni Vegetabilis: Leipzig, Carl Cnobloch, 132 p.Google Scholar
Renoncourt, L., and Meinesz, A., 2002, Formation of propagules on an invasive strain of Caulerpa racemosa (Chlorophyta) in the Mediterranean Sea: Phycologia, v. 41, p. 533535.Google Scholar
Ruedemann, R., 1909, Some marine algae from the Trenton Limestone of New York: New York State Museum Annual Report 62 for 1908, p. 194210.Google Scholar
Ruedemann, R., 1925, Some Silurian (Ontarian) faunas of New York: New York State Museum Bulletin 265, 84 p.Google Scholar
Ruedemann, R., 1947, Graptolites of North America: Geological Society of America Memoir 19, 652 p.Google Scholar
Sass, D.B., and Rock, B.N., 1975, The genus Plumalina Hall, 1858 (Coelenterata)—re-examined: Bulletins of American Paleontology, v. 67, p. 407422.Google Scholar
Schaffner, J.H., 1922, The classification of plants XII: Ohio Journal of Science, v. 22, p. 129139.Google Scholar
Sdzuy, K., 1974, Mittelkambrische Graptolithen aus NW-Spanien: Paläontologische Zeitschrift, v. 48, p. 110139.Google Scholar
Seward, A.C., 1933, Plant Life Through the Ages: A Geological and Botanical Retrospect, 2nd ed.: New York, Hafner, 638 p.Google Scholar
Simo, J.A., Choi, Y.S., Freiberg, P.G., Byers, C.W., Dott, R.H. Jr., and Saylor, B.Z., 1997, Sedimentology, sequence stratigraphy, and paleoceanography of the Middle and Upper Ordovician of eastern Wisconsin, in Mudrey, M.G. Jr, ed., Guide to Field Trips in Wisconsin and Adjacent Areas of Minnesota, 31st Annual Meeting, North-Central Section, Geological Society of America, p. 95114.Google Scholar
Spencer, J.W., 1884, Niagara fossils: Transactions of the Academy of Science of St. Louis, v. 4, p. 555610.Google Scholar
Stolley, E., 1893, Uber Silurische Siphoneen: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 2, p. 135146.Google Scholar
Taylor, W.R., 1960, Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas: Ann Arbor, University of Michigan Press, 870 p.Google Scholar
Teller, E.E., 1911, A synopsis of the type specimens of fossils from the Paleozoic formations of Wisconsin: Bulletin of the Wisconsin Natural History Society, v. 9, p. 170271.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F., Littler, D., Littler, M., Leliaert, F., and De Clerk, O., 2009, A multi-locus time-calibrated phylogeny of the siphonous green algae: Molecular Phylogenetics and Evolution, v. 50, p. 642653.Google Scholar
Walcott, C.D., 1894, Discovery of the genus Oldhamia in America: Proceedings of the United States National Museum, v. 17, p. 313315.Google Scholar
Wang, Y., Jin, J., and Zhan, R., 2014, A new noncalcified thallophytic alga from the Lower Silurian of Anticosti Island, eastern Canada: International Journal of Plant Sciences, v. 175, p. 359368.Google Scholar
Whiteaves, J.F., 1895, Descriptions of eight new species from the (Galena) Trenton Limestones of Lake Winnipeg and the Red River Valley: Canadian Record of Science, v. 6, p. 387397.Google Scholar
Whitfield, R.P., 1894, On new forms of marine algae from the Trenton Limestone, with observations on Buthograptus laxus Hall: American Museum of Natural History Bulletin, v. 6, p. 351358.Google Scholar
Whitfield, R.P., 1895, Republication of descriptions of fossils from the Hall Collection in the American Museum of Natural History, from the Report of Progress for 1861 of the Geological Survey of Wisconsin, by James Hall, with illustrations from the original type specimens not heretofore figured: Memoirs of the American Museum of Natural History, v. 1, p. 3974.Google Scholar