Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:58:23.829Z Has data issue: false hasContentIssue false

Microstructure and diagenesis of calcified demosponges from the Upper Triassic of the northeastern Dolomites (Italy)

Published online by Cambridge University Press:  20 May 2016

A. Mastandrea
Affiliation:
Istituto di Paleontologia, Università di Modena, via Università 4, 41100 Modena, Italy
F. Russo
Affiliation:
Istituto di Paleontologia, Università di Modena, via Università 4, 41100 Modena, Italy

Abstract

The calcareous skeletons of 17 species of Triassic demosponges from the northeastern Dolomites have been analyzed for microstructure and diagenesis. The four microstructures recognized (irregular, spherulitic, penicillate aragonitic, and homogeneous granular Mg calcite) are described in terms of mineralogy; shape, dimension, and arrangement of microstructural elements; mode of growth; and possible biomineralization. The diagenesis in these sponge carbonate skeletons is of an aggrading type that occurred in diagenetic units, semi-closed systems, delineated by organic phragmas, which controlled the flux of diagenetic fluids. We tentatively interpret these phragmas as the remains of water-insoluble macromolecules for space delineation during the biomineralization process. In the aragonitic skeletons the preservation grade is correlated with Sr content, and the replacement of aragonite by calcite is marked by a Sr value around 4,000 p.p.m. Calcitized aragonite still retains a detectable amount of Sr. In Mg calcite skeletons the continuous and regular increase of grain size is inversely correlated with Mg content and directly with the distance from the organic phragmas.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bathurst, R. G. C. 1971. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology 12. Elsevier, Amsterdam, 620 p.Google Scholar
Cuif, J. P. 1973. Histologie de quelques Sphinctozoaires (Poriféres) triasiques. Geobios, 6:11125.CrossRefGoogle Scholar
Cuif, J. P. 1974. Role des Sclerosponges dans la faune récifale des Dolomites (Italie du Nord). Geobios, 7:139153.CrossRefGoogle Scholar
Cuif, J. P. 1979. Caracteres morphologiques et microstructuraux de trois sclerosponges triasiques association avec des chaetetida, p. 475481. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des Spongiaires. Colloques internationaux de Centre National de la Recherche Scientifique, number 291.Google Scholar
Cuif, J. P., and Gautret, P. 1987. Comparaison des modalités de diagenése du squelette de spongiaires carbonatés dans le Trias de Turquie et le Permien de Tunisie. Geobios, 20:757773.CrossRefGoogle Scholar
Cuif, J. P., and Gautret, P. 1991a. Taxonomic value of microstructural features in calcified tissue from Recent and fossil Demospongiae and Calcarea, p. 159169. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Cuif, J. P., and Gautret, P. 1991b. Étude de la répartition des principaux types de démosponges calcifiées depuis le Permien. Hypothèse d'une incidence des conditions océanologiques sur la biominéralisation carbonatée des spongiaires. Société Géologique de France, Bulletin, 162:875886.Google Scholar
Dieci, G., Russo, A., and Russo, F. 1974. Nota preliminare sulla microstruttura di spugne aragonitiche del Trias medio-superiore. Società Paleontologica Italiana, Bollettino, 13:99107.Google Scholar
Dieci, G., Russo, A., and Marchi, M. S. 1977. Occurrence of spicules in Triassic chaetetids and ceratoporellids. Società Paleontologica Italiana, Bollettino, 16:229238.Google Scholar
Frisia Brunt, S., and Wenk, H. R. 1985. Replacement of aragonite by calcite in sediments from the S. Cassiano Formation (Italy). Journal of Sedimentary Petrology, 55:159170.Google Scholar
Gautret, P. 1985. Organisation de la phase minérale chez Vaceletia crypta (Vacelet) Démosponge, Sphinctozoaire actuelle. Comparaison avec des formes aragonitiques du Trias de Turquie. Geobios, 18:553562.CrossRefGoogle Scholar
Gautret, P. 1986. Utilisation taxonomique des caractéres microstructuraux du squelette aspiculaire des Spongiaires. Etude du mode de formation des microstructures attribuées au type sphérolitique. Annales de Paléontologie, 72:75110.Google Scholar
Gautret, P., and Razgallah, S. 1987. Architecture et microstructure des Chaetetides du Permien du Jebel Tebaga (Sud-Tunisien). Annales de Paléontologie. 73:5982.Google Scholar
Gautret, P., Vacelet, J., and Cuif, J. P. 1991. Caractéristiques des spicules et du squelette carbonaté des espèces actuelles du genre Merlia (Démosponges, Merliida), et comparaison avec des Chaetétides fossiles. Muséum National d'Histoire Naturelle, Bulletin, 4 série, section A, 13:289307.Google Scholar
Hartman, W. D. 1969. New genera and species of coralline sponges (Porifera) from Jamaica. Postilla, 137:139.CrossRefGoogle Scholar
Hartman, W. D., and Goreau, T. F. 1966. Ceratoporella, a living sponge with stromatoporoid affinities. American Zoologist, 6:563564.Google Scholar
Hartman, W. D., and Goreau, T. F. 1970. Jamaican coralline sponges: their morphology, ecology and fossil relatives, p. 205243. In Fry, W. G. (ed.), The Biology of the Porifera. Zoological Society of London, Symposia, 25. The Zoological Society of London, Academic Press, London.Google Scholar
Hartman, W. D., and Goreau, T. F. 1975. A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla, 167:121.CrossRefGoogle Scholar
James, N. P., and Ginsburg, R. N. 1979. The Seaward Margin of Belize Barrier and Atoll Reefs. International Association of Sedimentologists, Special Publication 3, 191 p.Google Scholar
Laghi, G. F., Martinelli, G., and Russo, F. 1984. Localization of minor elements by EDS microanalysis in aragonitic sponges from the St. Cassian Beds, Italian Dolomites. Lethaia, 17:133138.CrossRefGoogle Scholar
Lowenstam, H. A., and Weiner, S. 1989. On Biomineralization. Oxford University Press, Inc., New York, 324 p.CrossRefGoogle Scholar
Reitner, J. 1987. A new calcitic sphinctozoan sponge belonging to the Demospongiae from the Cassian Formation (Lower Carnian; Dolomites, northern Italy) and its phylogenetic relationship. Geobios, 20:571589.CrossRefGoogle Scholar
Reitner, J. 1991. Phylogenetic aspects and new descriptions of spicule-bearing hadromerid sponges with a secondary calcareous skeleton (Tetractinomorpha, Demospongiae), p. 179211. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Reitner, J. 1992. “Coralline spongien.” Der Versuch einer phylogenetischtaxonomischen Analyse. Berliner Geowissenschaftliche Abhandlungen (E), 1:1352.Google Scholar
Russo, F., Neri, C., Mastandrea, A., and Laghi, G. F. 1991. Depositional and diagenetic history of the Alpe di Specie (Seelandalpe) fauna (Carnian, northeastern Dolomites). Facies, 25:187210.CrossRefGoogle Scholar
Sandberg, P. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305:1922.CrossRefGoogle Scholar
Sandberg, P. 1985. Aragonite cements and their occurrence in ancient limestone, p. 3357. In Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements. Society of Economic Paleontologists and Mineralogists, Special Publication 36.CrossRefGoogle Scholar
Scherer, M. 1977. Preservation, alteration and multiple cementation of aragonitic skeletons from the Cassian Beds (U. Triassic, southern Alps): petrographic and geochemical evidence. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 154:213262.Google Scholar
Schroeder, J. H. 1984. The petrogenetogram of corals: spatial variation in diagenetic sequences, p. 261272. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria, Fourth International Symposium on Fossil Cnidaria Washington, Proceedings. Palaeontographica Americana, number 54.Google Scholar
Schroeder, J. H. 1988. Spatial variation in the porosity development of carbonate sediments and rocks. Facies, 18:181204.CrossRefGoogle Scholar
Simkiss, K. 1986. The processes of biomineralization in lower plants and animals—an overview, p. 1937. In Leadbeater, B. S. C. and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. The Systematics Association, Special Volume 30.Google Scholar
Soest, R. W. M. Van. 1984. Deficient Merlia normani Kirkpatrick, 1908, from the Curacao Reef, with a discussion on the phylogenetic interpretation of sclerosponges. Bijdragen tot de Dierkunde, 54:211219.CrossRefGoogle Scholar
Termier, H., and Termier, G. 1973. Stromatopores, sclérosponges et pharétrones: les Ischyrospongia. Annales des Mines et de la Géologie, 26:285297.Google Scholar
Tucker, M. E., and Wright, V. P. 1990. Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, 482 p.CrossRefGoogle Scholar
Vacelet, J. 1964. Etude monographique de l'Eponge Calcaire Pharétronide de Méditerranée Petrobiona massiliana Vacelet et Lévi. Le Pharétronides actuelles et fossiles. Recueil des travaux de la Station marine d'Endoume, Faculté des sciences de Marseille, Bulletin 34(50):1125.Google Scholar
Vacelet, J. 1979. Development of skeletal formation, microstructure, and mineralogy of rigid calcareous sponges from the late Palaeozoic to Recent, p. 449475. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des Spongiaires. Colloques internationaux du Centre National de la Recherche Scientifique, number 291.Google Scholar
Vacelet, J. 1981. Eponges hypercalcifiées (“Pharétronides,” “Sclérosponges”) des cavités des récifs coralliens de Nouvelle-Caledonie. Muséum National d'Histoire Naturelle, Bulletin, 4 série, section A, 2:313351.CrossRefGoogle Scholar
Vacelet, J. 1983. Les Eponges calcifiées et les récifs anciens. Pour la Science, 6:1422.Google Scholar
Vacelet, J. 1985. Coralline sponges and the evolution of Porifera, p. 113. In Conway Morris, S., George, J. D., Gibson, R., and Platt, H. M. (eds.), The Origins and Relationships of Lower Invertebrates. The Systematics Association, Special Volume 28.Google Scholar
Vacelet, J., and Uriz, M. J. 1991. Deficient spiculation in a new species of Merlia (Merliida, Demospongiae) from the Balearic Islands, p. 171177. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin, Heidelberg.Google Scholar
Veizer, J., and Wendt, J. 1976. Mineralogy and chemical composition of Recent and fossil skeletons of calcareous sponges. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1976:558573.Google Scholar
Wendt, J. 1974. Der Skelettbau aragonitischer Kalkschwamme aus der alpinen Obertrias. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1974:498511.Google Scholar
Wendt, J. 1979. Development of skeletal formation, microstructure, and mineralogy of rigid calcareous sponges from the late Palaeozoic to Recent, p. 449475. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des Spongiaires. Colloques internationaux du Centre National de la Recherche Scientifique, number 291.Google Scholar
Wendt, J. 1984. Skeletal and spicular mineralogy, microstructure and diagenesis of coralline calcareous sponges, p. 326336. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria, Fourth International Symposium on Fossil Cnidaria Washington, Proceedings. Palaeontographica Americana, number 54.Google Scholar
Wendt, J. 1990. Corals and coralline sponges, p. 4565. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold, New York, Volume I–II.Google Scholar
Wilbur, K. M. 1984. Many minerals, several phyla, and a few considerations. American Zoologist, 24:839845.CrossRefGoogle Scholar
Willenz, P., and Hartman, W. D. 1985. Calcification rate of Ceratoporella nicholsoni (Porifera: Sclerospongiae): an in situ study with calcein, p. 113118. Fifth International Coral Reef Congress, Proceedings, Tahiti, volume 5.Google Scholar
Willenz, P., and Hartman, W. D. 1989. Micromorphology and ultrastructure of Caribbean sclerosponges, I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellidae: Porifera). Marine Biology, 103:387401.CrossRefGoogle Scholar
Wood, R. 1991. Non-spicular biomineralization in calcified demosponges, p. 323340. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin, Heidelberg.Google Scholar