Skip to main content Accessibility help
×
Home

Microstructure and composition of the periderm of conulariids

  • Robert C. Ford (a1), Heyo Van Iten (a2) (a3) and George R. Clark (a4)

Abstract

Transmitted light and scanning electron imaging of sectioned specimens of Conularia and Paraconularia, prepared using HCl etching and critical point drying, revealed that their periderm is composed of extremely thin (approximately 0.5–3 µm), variably distinct microlamellae that are alternately organic poor and organic rich. Organic-rich microlamellae are cross-connected by slender strands of organic matter originally embedded in calcium phosphate, which in etched specimens has been dissolved. Microlamellae may be organized in thicker (approximately 5–75 µm) layers, or macrolamellae, that vary in color and organic matter content, possibly owing to changes in the ambient paleoenvironment. Thickening of the periderm to form transverse ribs and internal carinae was achieved through gradual thickening of individual microlamellae. In the core of the transverse ribs and internal carinae the distinction between organic-rich and organic-poor microlamellae may be reduced, owing to organic material becoming dominant over (former) mineral matter or vice versa. Combined with observations of plicated aperture closure in thin-walled conulariids, including Archaeoconularia slateri (Reed, 1933) (Upper Ordovician, Scotland) showing smooth folding of midline carinae through angles greater than 90°, these results suggest a structure and original flexibility in the organic-rich biocomposite forming the conulariid periderm that supports its homology to the chitinous lamellar periderm of coronate scyphozoans.

Copyright

References

Hide All
Arai, M.N., 2009, The potential importance of podocysts to the formation of scyphozoanblooms: a review: Hydrobiologia, v. 616, p. 241246.
Babcock, L.E., and Feldmann, R.M., 1986a, Devonian and Mississippian conulariids of North America, Pt. A, General description and Conularia : Annals of Carnegie Museum, v. 55, p. 349410.
Babcock, L.E., and Feldmann, R.M., 1986b, Devonian and Mississippian conulariids of North America, Pt. B, Paraconularia, Reticulaconularia, and organisms rejected from Conulariida: Annals of Carnegie Museum, v. 55, p. 411479.
Babcock, L.E., and Feldmann, R.M., 1986c, The phylum Conulariida, in Hoffmann, A., and Nitecki, M.H., eds., Problematic fossil taxa: Oxford, Oxford University Press, p. 135147.
Babcock, L.E., Feldmann, R.M., and Wilson, M.T., 1987, Teratology and pathology of some Paleozoic conulariids: Lethaia, v. 20, p. 93105.
Barrande, J., 1867, Système Silurien du centre de la Bohême. Ière Partie. Tome 3. Classe des mollusques, ordre des ptéropodes: Prague, Charles Bellman, 179 p.
Bertazzo, S., Maidment, S., Kallepitis, C., Fearn, S., Stevens, M., and Xie, H., 2015, Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens: Nature Communications, doi:10.1038/ncomms8352.
Billings, E., 1866, Catalogues of the Silurian fossils of the Island of Anticosti, with descriptions of some new genera and species: Geological Survey of Canada, Separate Report. Publication No. 427, 93 p.
Bischoff, G.C.O., 1978, Internal structures of conulariid tests and their functional significance, with special reference to Circoconulariina n. suborder (Cnidaria, Scyphozoa): Senckenbergiana Lethaia, v. 59, p. 275327.
Bouček, B., and Ulrich, F., 1929, Étude sur la coquille du genre Conularia Miller: Statniho geologickéo ústavu Československé Republiky, Věstnik, v. 5, p. 125.
Brood, K., 1995, Morphology, structure, and systematics of the conulariids: GFF, v. 117, p. 121137.
Chapman, D.M., 1966, Evolution of the scyphistoma, in Rees, W.J., ed., The Cnidaria and Their Evolution. Symposium of the Zoological Society of London 16: London, Academic Press, p. 5175.
Chapman, D.M., and Werner, B., 1972, Structure of a solitary and a colonial species of Stephanoscyphus (Scyphozoa, Coronatae) with observations on periderm repair: Helgoländer Wissenschaftliche Meeresuntersuchungen, v. 23, p. 393421.
Clark, G.R. II., 1974, Growth lines in invertebrate skeletons: Annual Review of Earth and Planetary Sciences, v. 2, p. 7799.
Clark, G.R. II., 1980, Techniques for observing the organic matrix of molluscan shells, in Rhoads, D.C., and Lutz, R.A., eds., Skeletal Growth of Aquatic Organisms: New York, Plenum Press, p. 607612.
Clark, G.R. II., 1993, Physical evidence for organic matrix degradation in fossil mytilid (Mollusca: Bivalvia) shells, in Kobayashi, I., Mutvei, H., and Sahni, A., eds., Structure, Formation and Evolution of Fossil Hard Tissues: Tokyo, Tokai University Press, p. 7379.
Clark, G.R. II., 1999a, Microstructural transitions in the shells of Mercenaria mercenaria as functions of age and stress: Geological Society of America Abstracts with Programs, v. 31(7), p. 471.
Clark, G.R. II., 1999b, Organic matrix taphonomy in some molluscan shell microstructures: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 149, p. 305312.
Clark, G.R. II., 2009, Organic matrix in the early Cambrian: physical evidence and significance: Geological Society of America Abstracts with Programs, v. 41(7), p. 630.
Clark, G.R. II., 2012, The organic matrix mystery: too many phyla, too little time: Geological Society of America Abstracts with Programs, v. 44(7), p. 526.
Cuif, J.P., Dauphin, Y., and Sorauf, J.P., 2011, Biominerals and Fossils through Time: Cambridge, Cambridge University Press, 490 p.
Feldmann, R.M., and Babcock, L.E., 1986, Exceptionally preserved conulariids from Ohio—reinterpretation of their anatomy: National Geographic Research, v. 2, p. 464472.
Foerste, A.F., 1928, American Arctic and related cephalopods: Denison University Bulletin, Journal of the Scientific Laboratories, v. 23, p. 1110.
Gupta, N.S., Michels, R., Briggs, D.E.G., Evershed, R.P., and Pancost, R.D., 2006, The organic preservation of fossil arthropods: an experimental study: Proceedings of the Royal Society of London, Part B, v. 273, p. 27772783.
Hall, J., 1847, Palaeontology of New-York. Volume 1. Containing Descriptions of the Organic Remains of the Lower Division of the New-York System (Equivalent to the Lower Silurian Rocks of Europe): Albany, C. Van Benthuysen, 338 p.
Hughes, N.C., Gunderson, G.O., and Weedon, M.J., 2000, Late Cambrian conulariids from Wisconsin and Minnesota: Journal of Paleontology, v. 74, p. 828838.
Jackson, A.P., Vincent, J.F.V., and Turner, R.M., 1988, The mechanical design of nacre: Proceedings of the Royal Society of London, Part B, v. 234, p. 415440.
Jerre, F., 1994, Anatomy and phylogenetic significance of Eoconularia loculata, a conulariid from the Silurian of Gotland: Lethaia, v. 2, p. 97109.
John, D.L., Hughes, N.C., Galaviz, M.I., Gunderson, G.O., and Meyer, R., 2010, Unusually preserved Metaconularia manni (Roy, 1935) from the Silurian of Iowa, and the systematics of the genus: Journal of Paleontology, v. 84, p. 131.
Kiderlen, H., 1937, Die Conularien. Über Bau and Leben der ersten Scyphozoa: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abteilung B, v. 77, p. 113169.
Kowalski, J., 1935, Les Conulaires. Quelques observations sur leur structure anatomique: Société des Sciences Naturèlles de l’Ouest France, Bulletin Série 5, v. 5, p. 281293.
Kozlowski, R., 1968, Nouvelles observations sur les conulaires: Acta Palaeontologica Polonica, v. 13, p. 497535.
Leme, J.M., Simões, M.G., Rodrigues, S.C., Van Iten, H., and Marques, A.C., 2008, Major developments in conulariid research: problems of interpretation and future perspectives: Ameghiniana, v. 45, p. 407420.
Lucas, S.G., 2012, The extinction of the conulariids: Geosciences 2012, v. 2, p. 110.
Mann, S., 2001, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry: Oxford, Oxford University Press, 198 p.
Moore, R.C., and Harrington, H.J., 1956a, Scyphozoa, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, part F, Coelenterata: Lawrence, Kansas, The Geological Society of America and The University of Kansas, p. F27F38.
Moore, R.C., and Harrington, H.J., 1956b, Conulata, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, part F, Coelenterata: Lawrence, Kansas, The Geological Society of America and The University of Kansas, p. F54F66.
Muscente, A.D., and Xiao, S., 2015, New occurrences of Sphenothallus in the lower Cambrian of South China: implications for its affinities and taphonomic demineralization of small shelly fossils: Palaeogeography, Palaeoclimatology, Palaeoecology, doi:10.1016/j.palaeo.2015.07.041.
Raup, D.M., and Stanley, S.M., 1978, Principles of Paleontology (second edition): New York, W.H. Freeman and Company, 481 p.
Reed, F.R.C., 1933, Some new species of Conularia from Girvan: Geological Magazine, v. 70, p. 354358.
Robson, S.P., and Young, G.A., 2013, Late Ordovician conulariids from Manitoba, Canada: Journal of Paleontology, v. 87, p. 775785.
Schweitzer, M., Wittmeyer, J., Horner, J., and Toporski, J., 2005, Soft-tissue vessels and cellular preservation in Tyrannosaurus rex : Science, v. 307, p. 19521955.
Sendino, C., Zàgoršek, K., and Vhylasová, Z., 2011, The aperture and its closure in an Ordovician conulariid: Acta Palaeontologica Polonica, v. 56, p. 659663.
Sinclair, G.W., 1940, The genotype of Conularia : Canadian Field Naturalist, v. 54, p. 7274.
Sowerby, J., 1821, The Mineral Conchology of Great Britain; or Coloured Figures and Descriptions of those Remains of Testaceous Animals or Shells, Which Have Been Preserved at Various Times, and Depths in the Earth: London, W. Arding Co., 194 p.
Swallow, G.C., 1860, Descriptions of new fossils from the Carboniferous of and Devonian rocks of Missouri: Academy of Science of Saint Louis, Transaction, v. 1, p. 635660.
Van Iten, H., 1991a, Anatomy, pattern of occurrence, and nature of the conulariid schott: Palaeontology, v. 34, p. 939954.
Van Iten, H., 1991b, Evolutionary affinities of conulariids, in Simonetta, A.M., and Morris, S.C., eds., The Early Evolution of Metazoa and the Significance of Problematic Fossil Taxa: Cambridge, Cambridge University Press, p. 145154.
Van Iten, H., 1992a, Microstructure and growth of the conulariid test: implications for conulariid affinities: Palaeontology, v. 35, 359372.
Van Iten, H., 1992b, Morphology and phylogenetic significance of the corners and midlines of the conulariid test: Palaeontology, v. 35, 335358.
Van Iten, H., Cox, R.S., and Mapes, R.H., 1992, New data on the morphology of Sphenothallus Hall: implications for its affinities: Lethaia, v. 25, p. 135144.
Van Iten, H., Fitzke, J.A., and Cox, R.S., 1996, Problematical fossil cnidarians from the Upper Ordovician of the north-central USA: Palaeontology, v. 39, p. 10371064.
Van Iten, H., Vhylasová, Z., Zhu, M.Y., and Yi, Q., 2005, Widespread occurrence of microscopic pores in conulariids: Journal of Paleontology, v. 79, p. 400407.
Van Iten, H., Leme, J.M., and Simões, M.G., 2006a, Additional observations on the gross morphology and microstructure of Baccaconularia Hughes, Gunderson et Weedon, 2000, a Cambrian (Furongian) conulariid from the north-central USA: Palaeoworld, v. 15, p. 294306.
Van Iten, H., Leme, J.M., Simões, M.G., Marques, A.C., and Collins, A.G., 2006b, Reassessment of the phylogenetic position of conulariids (?Ediacaran–Triassic) in the subphylum Medusozoa (phylum Cnidaria): Journal of Systematic Palaeontology, v. 4, p. 109118.
Van Iten, H., Moussa, K., and Yahaya, M., 2008, Conulariids of the upper Talak Formation (Mississippian, Visean) of northern Niger (West Africa): Journal of Paleontology, v. 82, p. 192196.
Van Iten, H., Burkey, M.H., Leme, J.M., and Marques, A.C., 2014a, Cladistics and mass extinctions: the example of conulariids (Scyphozoa, Cnidaria) and the End Ordovician Extinction Event: GFF, v. 136, p. 275280.
Van Iten, H., Marques, A.C., Leme, J.M., Pacheco, M.L.A.F., and Simões, M.G., 2014b, Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic–Cambrian history: Palaeontology, v. 3, p. 114.
Vinn, O., and Kirsimäe, K., 2014, Sphenothallus (Cnidaria?) in the Late Ordovician of Baltica, its mineral composition and ultrastructure: Acta Palaeontologica Polonica, doi:10.4202/app.00049.2013.
Weiner, S., Lowenstam, H.A., and Hood, L., 1976, Characterization of 80-million-year-old mollusk shell proteins: Proceedings of the National Academy of Sciences of the United States of America, v. 73, p. 25412545.
Werner, B., 1966a, Morphologie, Systematik und Lebensgeschichte von Stephanoscyphus (Scyphozoa, Coronatae) sowie seine Bedeutung für die Evolution der Scyphozoa: Verhandlungen der Deutschen Zoologischen Gesellschaft in Göttingen, Zoologischer Anzeiger Supplement, v. 30, p. 397–319.
Werner, B., 1966b, Stephanoscyphus (Scyphozoa, Coronata) und seine direkte Abstammung von den fossilen Conulata: Helgoländer Wissenschaftliche Meeresuntersuchungen, v. 13, p. 317347.
Werner, B., 1967, Stephanoscyphus Allman (Scyphozoa, Coronatae), ein rezenter Vertreter der Conulata? Paläontologische Zeitschrift, v. 41, p. 137153.
Williams, A., 1997, Shell structure, in Williams, A., Brunton, C.H.C., and Carlson, S.J., eds., Treatise on Invertebrate Paleontology, part H, v. 1, Brachiopoda: Boulder, Colorado, The Geological Society of America and The University of Kansas, p. H267H320.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed