Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:28:05.968Z Has data issue: false hasContentIssue false

Large heteromorph ammonites from the Upper Cretaceous of Seymour Island, Antarctica

Published online by Cambridge University Press:  19 May 2016

Eduardo B. Olivero
Affiliation:
Purdue University, Department of Earth and Atmospheric Sciences, West Lafayette, Indiana 47907
William J. Zinsmeister
Affiliation:
Purdue University, Department of Earth and Atmospheric Sciences, West Lafayette, Indiana 47907

Abstract

Two species of the heteromorph ammonite genus Diplomoceras Hyatt are described from the Upper Cretaceous of the James Ross–Seymour Islands area, Antarctica. The late Campanian–early Maastrichtian D. lambi Spath has a relatively high rib density, whereas D. maximum n. sp. has a lower rib density and is known only from the uppermost Maastrichtian of the Lopez de Bertodano Formation on Seymour Island. Both species attain an exceptionally large size with the body chamber of D. maximum n. sp. attaining a length in excess of one meter. The structure of the shell wall in Diplomoceras is characterized by the thickening of the nacreous layer below the ribs. The shell thickening results in an inner flat surface and a smooth phragmocone. Reconstruction of the shell suggests at least four parallel shafts and three U-connectives. Estimates of the total density, center of buoyancy, and center of mass in this reconstructed shell indicate a slightly positive buoyant shell with a relatively unstable floating position.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, F. M. 1958. Upper Cretaceous of the Pacific Coast. Geological Society of America Memoir, 71:1378.Google Scholar
Andersson, G. L. 1906. On the geology of Graham Land. Geological Institute, University of Uppsala Bulletin 7:1971.Google Scholar
Birkelund, T. 1980. Ammonoid shell structure, p. 177214. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematic Association Special Volume 18, Academic Press, London and New York.Google Scholar
Brunnschweiler, R. O. 1966. Upper Cretaceous ammonites from the Carnarvon Basin of Western Australia. 1. The heteromorph Lytoceratina. Bulletin Australian Bureau of Mineral Resources, Geology, Geophysics, 58:158.Google Scholar
Del Valle, R., and Rinaldi, C. A. 1975. Sobre la presencia de Diplomoceras lambi Spath en la isla Vicecomodoro Marambio, Antartida. Instituto Antartico Argentino, Contribucion, 191:139.Google Scholar
Heptonstall, W. B. 1970. Buoyancy control in ammonoids. Lethaia, 3:317328.Google Scholar
House, M. R. 1980. On the origin, classification and evolution of the early Ammonoidea, p. 336. In House, M. R. and Senior, J R. (eds.), The Ammonoidea. Systematic Association Special Volume 18, Academic Press, London and New York.Google Scholar
Hunicken, M. 1965. Algunos Cefalopodos Supracretacicos de Rio Turbio (Santa Cruz). Revista Facultad Ciencias Exactas Fisicas y Naturales, Universidad Nacional de Cordoba, 26(1, 2):4999.Google Scholar
Hyatt, A. 1900. Cephalopoda, p. 502592. In von Zittel, K. A., Textbook of Paleontology, 1st English ed. (translated by Eastman, C. R.). McMillan and Co., Ltd., London.Google Scholar
Ineson, J. R., Crame, J. A., and Thomson, M. R. A. 1986. Lithostratigraphy of the Cretaceous strata of west James Ross Island, Antarctica. Cretaceous Research, 7:141159.Google Scholar
Jones, D. L. 1961. Muscle attachment impressions in a Cretaceous ammonite. Journal of Paleontology, 35:502504.Google Scholar
Jones, D. L. 1963. Upper Cretaceous (Campanian and Maestrichtian) ammonites from southern Alaska. U.S. Geological Survey Professional Paper, 432:153.Google Scholar
Kennedy, W. J. 1986. The ammonite fauna of the Calcaire, a Baculites (Upper Maastrichtian) of the Cotentin Peninsula (Manche, France). Palaeontology, 29:2583.Google Scholar
Kennedy, W. J. and Summesberger, H. 1986. Lower Maastrichtian ammonites from Neuberg, Steiermark, Austria. Beitrage zur Palaeontologie von Osterreich, 12:181242.Google Scholar
Kilian, W., and Reboul, P. 1909. Les cephalopodes neocretacees des Iles Seymour et Snow Hill. Wissenschaftliche Ergebnisse der Schwedischen Sudpolar-Expedition 1901–1903, 3(6):175.Google Scholar
Klinger, H. C. 1976. Cretaceous heteromorph ammonites from Zululand. Memoir Geological Survey Republic of South Africa, 69:1142.Google Scholar
Klinger, H. C. 1980. Speculations on buoyancy control and ecology in some heteromorph ammonites, p. 337355. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematic Association Special Volume 18, Academic Press, London and New York.Google Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Palaeontologia Polonica, 39:97142.Google Scholar
Lahsen, A., and Charrier, R. 1972. Late Cretaceous ammonites from Seno Skyring–Strait of Magellan area, Magallanes Province, Chile. Journal of Paleontology, 46:520532.Google Scholar
Macellari, C. E. 1986. Late Campanian–Maastrichtian ammonite fauna from Seymour Island (Antarctic Peninsula). The Paleontological Society Memoir, 18:155.Google Scholar
Matsumoto, T. 1984. Some ammonites from the Campanian (Upper Cretaceous) of Northern Hokkaido. Palaeontological Society of Japan, Special Papers, 27:193.Google Scholar
Mutvei, H., and Reyment, R. A. 1973. Buoyancy control and siphuncle function in ammonoids. Palaeontology, 16:623636.Google Scholar
Olivero, E. B. 1984. Nuevos amonites campanianos de la isla James Ross, Antartida. Ameghiniana, 21(1):5384.Google Scholar
Olivero, E. B. 1988. Early Campanian heteromorph ammonites from James Ross Island, Antarctica. National Geographic Research, 4(2):259271.Google Scholar
Olivero, E. B., Scasso, R. A., and Rinaldi, C. A. 1986. Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antartico Argentino, Contribucion, 331:129.Google Scholar
Olivero, E. B., and Zinsmeister, W. J. 1987. The shell morphology of the Upper Cretaceous heteromorph ammonite Diplomoceras Hyatt. Geological Society of America, Abstracts with Programs, 19:794.Google Scholar
Raup, D. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41:566574.Google Scholar
Rinaldi, C. A., Massabie, A., Morelli, J., Rosenman, H. L., and Del Valle, R. A. 1978. Geologia de la isla Vicecomodoro Marambio. Instituto Antartico Argentino, Contribucion, 217:137.Google Scholar
Saunders, W. B., and Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology, 12:6479.CrossRefGoogle Scholar
Schluter, C. 1872. Die Cephalopoden der oberen deutschen Kreide, I. Palaeontographica, 21:1120.Google Scholar
Spath, L. F. 1926. On new ammonites from the English Chalk. Geological Magazine, 63:7783.Google Scholar
Spath, L. F. 1953. The Upper Cretaceous cephalopod fauna of Graham Land. Falkland Islands Dependencies Survey, Scientific Report, 3:160.Google Scholar
Stephenson, L. W. 1941. The larger invertebrate fossils of the Navarro Group of Texas. University of Texas, Bulletin, 4101:1438.Google Scholar
Teichert, C. 1964. Morphology of hard parts, p. K13K53. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. K, Mollusca 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Trueman, A. E. 1941. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal Geological Society of London, 96:339383.Google Scholar
Usher, J. L. 1952. Ammonite faunas of the Upper Cretaceous rocks of Vancouver Island, British Columbia. Geological Survey of Canada Bulletin, 21:1182.Google Scholar
Ward, P. D. 1979. Cameral liquid in Nautilus and ammonites. Paleobiology, 5:4049.Google Scholar
Ward, P. D., and Westermann, G. E. G. 1977. First occurrence, systematics, and functional morphology of Nipponites (Cretaceous Lytoceratina) from the Americas. Journal of Paleontology, 51:367372.Google Scholar
Weller, S. 1903. The Stokes collection of Antarctic fossils. Journal of Geology, 11:413419.Google Scholar
Westermann, G. E. G. 1977. Form and function of orthoconic cephalopod shells with concave septa. Paleobiology, 3:300321.Google Scholar
White, C. A. 1890. On certain Mesozoic fossils from the islands of St. Paul's and St. Peter's in the Strait of Magellan. Proceedings of the U.S. National Museum, 13:1314.Google Scholar
Whitehaves, J. R. 1903. On some additional fossils from the Vancouver Cretaceous, with a revised list of the species therefrom. Geological Survey of Canada, Mesozoic Fossils, 1(5):309409.Google Scholar
Wiedmann, J. 1962. Ammoniten aus der vascogotischen Kreide (Nordspanien). I. Phylloceratina, Litoceratina. Palaeontographica 118A:119237.Google Scholar
Wiedmann, J. 1966. Stammegeschite und System der posttriadischen Ammonoideen. Neves Jahrbuch für Geologie und Palaeontologie Abhandlungen, 125:4979.Google Scholar
Wiedmann, J. 1969. The heteromorphs and ammonoid extinction. Biological Review, 44:563602.Google Scholar
Zinsmeister, W. J. 1982. Review of the Upper Cretaceous–lower Tertiary sequence on Seymour Island, Antarctica. Journal of the Geological Society, London, 139:779786.Google Scholar
Zittel, K. A. von. 1884. Handbuch der Palaeontologie. Abteilung I, Band 2. Oldenbourg Druck und Verlag, München und Leipzig, 893 p.Google Scholar