Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T02:23:52.378Z Has data issue: false hasContentIssue false

Geonettia waltonensis, a new goniodomacean dinoflagellate from the Pliocene of the North Atlantic region, and its evolutionary implications

Published online by Cambridge University Press:  20 May 2016

Martin J. Head*
Affiliation:
Godwin Institute for Quaternary Research, Department of Geography, University of Cambridge, Downing Place. Cambridge CB2 3EN, England, U.K.,

Abstract

A new species of the unusual dinoflagellate cyst genus Geonettia de Verteuil and Norris, 1996a is here described from the Pliocene of the western North Atlantic and eastern England. Geonettia waltonensis new species is only the second species to be formally described for this genus, whose type, G. clineae de Verteuil and Norris, 1996a, has a range of Miocene through Pliocene. Geonettia is a gonyaulacalean, goniodomacean genus of the subfamily Pyrodinioideae and is closely related to Eocladopyxis Morgenroth, 1966 and Capisocysta Warny and Wrenn, 1997, also found in the Cenozoic. However, Geonettia is the only known dinoflagellate cyst genus to have plates that dissociate extensively on both epi- and hypocyst during excystment. Geonettia waltonensis has this style of excystment, but its hypocystal tabulation is more akin to Capisocysta lata Head, 1998a than to G. clineae. Comparison of tabulation and other morphological features suggests that during the late Miocene, Capisocysta lata evolved from Geonettia waltonensis or a closely related species through failure of its epicystal plates to dissociate. Geonettia waltonensis probably did not evolve directly from G. clineae but may represent a separate lineage within Geonettia that arose during the Miocene.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, C. E. 1992. Biostratigraphic and paleoenvironmental interpretation of upper middle Miocene through lower Pleistocene dinoflagellate cyst, acritarch, and other algal palynomorph assemblages from Ocean Drilling Program Leg 105, Site 645, Baffin Bay. Unpublished M.Sc. thesis, University of Toronto, 257 p.Google Scholar
Balech, E. 1985. A revision of Pyrodinium bahamense Plate (Dinoflagellata). Review of Palaeobotany and Palynology, 45:1734.CrossRefGoogle Scholar
Berggren, W. A., Hilgen, F. J., Langereis, C. G., Kent, D. V., Obradovich, J. D., Raffi, I., Raymo, M. E., and Shackleton, N. J. 1995. Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geological Society of America Bulletin, 107:12721287.2.3.CO;2>CrossRefGoogle Scholar
Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L. 1980. Taxonomy of some Eocene dinoflagellate cyst species from southern England, p. 2636. In Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L., Dinoflagellate cysts and acritarchs from the Eocene of southern England. The Palaeontological Association, Special Papers in Palaeontology, 24.Google Scholar
Bütschli, O. 1885. Erster Band. Protozoa, p. 8651088. In Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reiches, wissenschaftlich dargestellt in Wort und Bild. C. F. Winter'sche Verlagshandlung, Leipzig and Heidelberg.Google Scholar
Canninga, G., Zijderveld, J. D. A., and Van Hinte, J. E. 1987. Late Cenozoic magnetostratigraphy of Deep Sea Drilling Project Hole 603C, Leg 93, on the North American continental rise off Cape Hatteras, p. 839848. In van Hinte, J. E., Wise, S. W. Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Davey, R. J., and Williams, G. L. 1966. The genus Hystrichosphaeridium and its allies, p. 53106. In Davey, R. J., Downie, C., Sarjeant, W. A. S., and Williams, G. L., Studies on Mesozoic and Cainozoic Dinoflagellate Cysts. Bulletin of the British Museum (Natural History) Geology, Supplement 3.Google Scholar
Deflandre, G. 1937. Microfossiles des silex crétacés. Deuxième partie. Flagellés incertae sedis. Hystrichosphaeridés. Sarcodinés. Organisms divers. Annales de paléontologie, 26:51103.Google Scholar
de Verteuil, L. 1996. Data report: Upper Cenozoic dinoflagellate cysts from the continental slope and rise off New Jersey, p. 439454. In Mountain, G. S., Miller, K. G., Blum, P. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 150. Ocean Drilling Program, College Station, Texas.Google Scholar
de Verteuil, L. 1997. Palynological delineation and regional correlation of lower through upper Miocene sequences in the Cape May and Atlantic City boreholes, New Jersey coastal plain, p. 129145. In Miller, K. G., and Snyder, S. W. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 150X. Ocean Drilling Program, College Station, Texas.Google Scholar
de Verteuil, L., and Norris, G. 1996a. Middle to upper Miocene Geonettia clineae, an opportunistic coastal embayment dinoflagellate of the Homotryblium Complex. Micropaleontology, 42:263284.CrossRefGoogle Scholar
de Verteuil, L., and Norris, G. 1996b. Part II. Homology and structure in dinoflagellate cyst terminology, p. 83172. In de Verteuil, L., L. and Norris, G., Miocene Dinoflagellate Stratigraphy and Systematics of Maryland and Virginia. Micropaleontology, 42 (supplement).Google Scholar
de Verteuil, L., and Norris, G. 1996c. Part I. Dinoflagellate cyst zonation and allostratigraphy of the Chesapeake Group, p. 182. In de Verteuil, L., L. and Norris, G., Miocene Dinoflagellate Stratigraphy and Systematics of Maryland and Virginia. Micropaleontology, 42 (supplement).Google Scholar
Fensome, R. A., Riding, J. B., and Taylor, F. J. R. 1996. Dinoflagellates, p. 107169. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 1. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Funnell, B. M., and West, R. G. 1977. Preglacial Pleistocene deposits of East Anglia, p. 247265. In Shotton, F. W. (ed.), British Quaternary Studies, Recent Advances. Clarendon Press, Oxford.Google Scholar
Haggerty, J., Sarti, M., Von Rad, U., Ogg, J. G., and Dunn, D. A. 1987. Late Aptian to Recent sedimentological history of the lower continental rise off New Jersey, Deep Sea Drilling Project Site 603, p. 12851304. In van Hinte, J. E., Wise, S. W. Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Head, M. J. 1996. Modern Dinoflagellate cysts and their biological affinities, p. 11971248. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 3. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Head, M. J. 1997. Thermophilic dinoflagellate assemblages from the mid Pliocene of eastern England. Journal of Paleontology, 71:165193CrossRefGoogle Scholar
Head, M. J. 1998a. New goniodomacean dinoflagellates with a compound hypotractal archeopyle from the late Cenozoic: Capisocysta Warny and Wrenn, emend. Journal of Paleontology, 72:797809.CrossRefGoogle Scholar
Head, M. J. 1998b. Marine environmental change in the Pliocene and early Pleistocene of eastern England: the dinoflagellate evidence reviewed. In Van Kolfschoten, Th. and Gibbard, P. L. (eds.), The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 60:199225.Google Scholar
Head, M. J. 1998c. Pollen and dinoflagellates from the Red Crag at Walton-on-the-Naze, Essex: evidence for a mild climatic phase during the early Late Pliocene of eastern England. Geological Magazine, 135:803817.CrossRefGoogle Scholar
Head, M. J., and Norris, G. 1996. Pliocene and lower Pleistocene dinoflagellates and acritarchs of the North Atlantic: taxonomy, magnetobiostratigraphy, and paleoclimatology. Palynology, 20:241 (Abstract).Google Scholar
Head, M. J., and Westphal, H. 1999. Palynology and paleoenvironments of a Pliocene carbonate platform: the Clino core, Bahamas. Journal of Paleontology, 73:125.CrossRefGoogle Scholar
Head, M. J., Norris, G., and Mudie, P. J. 1989. Palynology and dinocyst stratigraphy of the Miocene in ODP Leg 105, Hole 645E, Baffin Bay, p. 467514. In Srivastava, S. P., Arthur, M., Clement, B. et al., Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Hodgson, G. E., and Funnell, B. M. 1987. Foraminiferal biofacies of the early Pliocene Coralline Crag, p. 4473. In Hart, M. B. (ed.), Micropalaeontology of Carbonate Environments. British Micropalaeontological Society Series. Ellis Horwood Ltd., Chichester, U.K.Google Scholar
Kolev, S. M. 1993. Pliocene dinoflagellate-acritarch biostratigraphy and paleoecology integrated with magnetostratigraphy: DSDP Leg 93, Hole 603C, western North Atlantic. Unpublished M.Sc. thesis, University of Toronto, 125 p.Google Scholar
Liengjarern, M., Costa, L., and Downie, C. 1980. Dinoflagellate cysts from the Upper Eocene-Lower Oligocene of the Isle of Wight. Palaeontology, 23:475499.Google Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae), p. 3104. In Engler, A. and Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Wilhelm Engelmann, Leipzig.Google Scholar
Louwye, S., and Laga, P. 1998. Dinoflagellate cysts of the shallow marine Neogene succession in the Kalmthout well, northern Belgium. Bulletin of the Geological Society of Denmark, 45:7386.CrossRefGoogle Scholar
Ma'alouleh, K., and Moullade, M. 1987. Biostratigraphic and paleoenvironmental study of Neogene and Quaternary planktonic foraminifers from the lower continental rise of the New Jersey margin (western North Atlantic), Deep Sea Drilling Project Leg 93, Site 603, p. 481491. In van Hinte, J. E., Wise, S. W. Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
McLean, D. M. 1976. Eocladopyxis peniculatum Morgenroth, 1966, Early Tertiary ancestor of the modern dinoflagellate Pyrodinium bahamense Plate, 1906. Micropaleontology, 22, p. 347351.CrossRefGoogle Scholar
Morgenroth, P. 1966. Mikrofossilien und Konkretionen des nordwesteuropäischen Untereozäns. Palaeontographica, Abteilung B, 119:153.Google Scholar
Moullade, M. 1987. Deep Sea Drilling Project Leg 93: Biostratigraphic synthesis, p. 12711283. In Wise, J. E. van Hinte. S. W. Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Muza, J. P., Wise, S. W. Jr., and Covington, J. M. 1987. Neogene calcareous nannofossils from Deep Sea Drilling Project Site 603, Lower Continental Rise, western North Atlantic: biostratigraphy and correlation with magnetic and seismic stratigraphy, p. 593616. In van Hinte, J. E., Wise, S. W. Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft, 36:136160.Google Scholar
Plate, L. H. 1906. Pyrodinium bahamense n.g., n. sp. Die Leucht-Peridinee des “Feuersees” von Nassau, Bahamas. Archiv für Protistenkund, 7:411429.Google Scholar
Rossignol, M. 1962. Analyse pollinique de sédiments marins Quaternaires en Israël. II. Sédiments pléistocènes. Pollen et Spores, 4:121148.Google Scholar
Srivastava, S. P., Arthur, M. A. et al. 1987. Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Stover, L. E., Brinkhuis, H., Damassa, S. P., De Verteuil, L., Helby, R. J., Monteil, E., Partridge, A. D., Powell, A. J., Riding, J. B., Smelror, M., and Williams, G. L. 1996. Chapter 19. Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes, p. 641750. In Jansonius, J., and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 2. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems, 13:65108.CrossRefGoogle ScholarPubMed
Taylor, F. J. R., and Fukuyo, Y. 1989. Morphological features of the motile cell of Pyrodinium bahamense, p. 207217. In Hallegraeff, G. M. and Maclean, J. L. (eds.), Biology, epidemiology and management of Pyrodinium red tides. ICLARM Conference Proceedings 21. International Center for Living Aquatic Resources Management, Manila, Philippines.Google Scholar
Van Hinte, J. E., Wise, S. W. Jr., et al. 1987. Initial Reports of the Deep Sea Drilling Project, 93(1). U.S. Government Printing Office, Washington, D.C.CrossRefGoogle Scholar
Warny, S. A., and Wrenn, J. H. 1997. New species of dinoflagellate cysts from the Bou Regreg Core: a Miocene-Pliocene boundary section on the Atlantic coast of Morocco. Review of Palaeobotany and Palynology, 96:281304.CrossRefGoogle Scholar