Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T08:54:45.063Z Has data issue: false hasContentIssue false

Geometric morphometrics to interpret the endophytic egg-laying behavior of Odonata (Insecta) from the Eocene of Patagonia, Argentina

Published online by Cambridge University Press:  16 May 2019

Eugenia Romero-Lebrón
Affiliation:
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Universidad Nacional de Córdoba - CONICET. IMBIV. Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN), Av. Valparaíso s/n, C.C. 509, (5016) Córdoba, Argentina ,
Raquel M. Gleiser
Affiliation:
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Universidad Nacional de Córdoba - CONICET. IMBIV. Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN), Av. Valparaíso s/n, C.C. 509, (5016) Córdoba, Argentina , Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología. Av. Vélez Sársfield 299. C.C. 5000, (5016) Córdoba, Argentina
Julián F. Petrulevičius
Affiliation:
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) División Paleozoología Invertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina

Abstract

Although the order Odonata has a rich fossil record, many questions about its reproductive biology remain unanswered. There are two strategies of egg laying among odonates, exophytic and endophytic, the latter being one of the most revealing vestiges of plant–insect association in the fossil record. We assessed whether geometric morphometrics based on elliptical series of Fourier allow expression of variability of shape in traces of Odonata eggs within a leaf of Eucalyptus chubutensis (Berry) González (in part), González, 2009 (Myrtaceae) from Laguna del Hunco (Chubut, Argentina) (early Eocene) and whether this variability is consistent with the ichnotaxonomy of this material. We found that the largest variation corresponds to the compression of the shape while the remaining two components reflect variations in the apex position and its curvature, which changed according to the relative position of the traces in the leaf. There was no evidence that the hardness of the leaf would affect the shape of the egg trace. We postulate that these traces could have been produced by one single female: Variations in the pattern observable in the fossil of an originally three-dimensional structure are consistent with differences in the position of the eggs inserted by a single female who has flexed her abdomen to insert the eggs as she approaches the apex of the leaf (behavior observed also in extant dragonflies). For the first time, endophytic egg traces are analyzed with geometrical morphometrics, and this allows us to make inferences on the oviposition behavior of a female that lived around 52 million years ago.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami-Rodrigues, K., Iannuzzi, R., and Pinto, I.D., 2004, Permian plant-insect interactions from a Gondwana flora of southern Brazil: Fossils and Strata, v. 51, p. 106125.Google Scholar
Adams, D.C., Rohlf, F.J., and Slice, D.E., 2004, Geometric morphometrics: Ten years of progress following the ‘revolution’: Italian Journal of Zoology, v. 71, p. 516.10.1080/11250000409356545Google Scholar
Asahina, S., 1934, Ecological observations on Epiophlebia superstes: Kontyû, v. 8, p. 103106.Google Scholar
Bertling, M., 2007, What's in a name? Nomenclature, systematics, ichnotaxonomy, in Miller, W. III, ed., Trace Fossils: Concepts, Problems, Prospects: Amsterdam, Elsevier, p. 8191.10.1016/B978-044452949-7/50131-5Google Scholar
Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J., et al. , 2006, Nombres para rastrear fósiles: Un enfoque uniforme: Lethaia, v. 39, p. 265286.Google Scholar
Béthoux, O., Galtier, J., and Nel, A., 2004, Earliest evidence of insect endophytic oviposition: Palaios, v. 19, p. 408413.10.1669/0883-1351(2004)019<0408:EEOIEO>2.0.CO;22.0.CO;2>Google Scholar
Choong, M.F., 1996, What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars: Functional Ecology, v. 10, p. 668674.10.2307/2390178Google Scholar
Christopher, R.A., and Waters, J.A., 1974, Fourier series as a quantitative descriptor of miospore shape: Journal of Paleontology, v. 48, p. 697709.Google Scholar
Corbet, P.S., 1962 (facsimile 1983), A Biology of Dragonflies: Oxford, Classey.Google Scholar
Corbet, P.S., 1980, Biology of Odonata: Annual Review of Entomology, v. 25, p. 189217.10.1146/annurev.en.25.010180.001201Google Scholar
Crampton, J.S., 1995, Elliptic Fourier shape analysis of fossil bivalves: Some practical considerations: Lethaia, v. 28, p. 179186.Google Scholar
Denis Ávila, D., 2014, Application of the elliptic Fourier functions to the description of avian egg shape: Revista de Biología Tropical, v. 62, p. 14691480.10.15517/rbt.v62i4.12992Google Scholar
Denis Ávila, D., and Olavarrieta, U., 2011, ¿Existe la isomorfía en los huevos de la familia Ardeidae (Aves, Ciconiiformes)?: Animal Biodiversity and Conservation, v. 34, p. 3545.Google Scholar
Ferrario, V.F., Sforza, C., Tartaglia, G.M., Colombo, A., and Serrao, G., 1999, Size and shape of the human first permanent molar: A Fourier analysis of the occlusal and equatorial outlines: American Journal of Physical Anthropology, v. 108, p. 281294.10.1002/(SICI)1096-8644(199903)108:3<281::AID-AJPA4>3.0.CO;2-#3.0.CO;2-#>Google Scholar
Ferson, S., Rohlf, F.J., and Koehn, R.K., 1985, Measuring shape variation of two-dimensional outlines: Systematic Biology, v. 34, p. 5968.10.1093/sysbio/34.1.59Google Scholar
Foote, M., 1989, Perimeter-based Fourier analysis: A new morphometric method applied to the trilobite cranidium: Journal of Paleontology, v. 63, p. 880885.10.1017/S0022336000036556Google Scholar
Gnaedinger, S.C., Adami-Rodrigues, K., and Gallego, O.F., 2014, Endophytic ovipositions on leaves from the Late Triassic, northern Chile: Ichnotaxonomic, palaeobiogeographical and palaeoenvironmetal considerations: Geobios, v. 47, p. 221236.Google Scholar
González, C.C., 2009, Revisión taxonómica y biogeográfica de las familias de angiospermas dominantes de la “Flora del Hunco” (Eoceno temprano), Chubut, Argentina [Ph.D. dissertation]: Buenos Aires, Universidad de Buenos Aires, 174 p.Google Scholar
Guerrero-Arenas, R., Zúñiga-Marroquin, T., and Jiménez-Hidalgo, E., 2018, How much variation is in the shape of fossil pupation chambers? An exploratory geometric morphometric analysis of Fictovichnus gobiensis from the late Eocene of Oaxaca, southern Mexico: Boletín de la Sociedad Geológica Mexicana, v. 70, p. 361368.10.18268/BSGM2018v70n2a6Google Scholar
Haines, A.J., and Crampton, J.S., 2000, Improvements to the method of Fourier shape analysis as applied in morphometric studies: Palaeontology, v. 43, p. 765783.10.1111/1475-4983.00148Google Scholar
Hammer, Ø., and Harper, D.A.T., 2006, Morphometrics, in Hammer, Ø., and Harper, D.A.T., eds., Paleontological Data Analysis: Oxford, Blackwell Publishing, p. 78156.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, Paleontological statistics software: Package for education and data analysis: Palaeontologia Electronica, v. 4, p. 19.Google Scholar
Hellmund, M., and Hellmund, W., 1998, Eilogen von Zygopteren (Insecta, Odonata, Coenagrionidae) in unteroligozänen Maarsedimenten von Hammerunterwiesenthal (Freistaat Sachsen): Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, v. 43, p. 281292.Google Scholar
Hinton, H.E.,1981, Biology of insect eggs: Oxford, Pergammon Press.Google Scholar
Iwata, H., and Ukai, Y., 2002, SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors: Journal of Heredity, v. 93, p. 384385.Google Scholar
Jödicke, R., 1997, Die Binsenjungfern und Winterlibellen Europas: Madgeburg, Germany, Westarp Wissenschaften.Google Scholar
Krassilov, V., and Silantieva, N., 2008, Systematic description of phyllostigmas, in Krassilov, V., and Rasnitsyn, A., eds., Plant-Arthropod Interactions: The Early Angiosperm History. Evidence from the Cretaceous of Israel: Leiden, Brill, p. 6575.10.1163/ej.9789004170711.1-229Google Scholar
Krassilov, V., Silantieva, N., Hellmund, M., and Hellmund, W., 2007, Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel: Cretaceous Research, v. 28, p. 803811.10.1016/j.cretres.2006.11.004Google Scholar
Kuhl, F.P., and Giardina, C.R., 1982, Elliptic Fourier features of a closed contour: Computer graphics and image processing, v. 18, p. 236258.10.1016/0146-664X(82)90034-XGoogle Scholar
Laaß, M., and Hoff, C., 2015, The earliest evidence of damselfly like endophytic oviposition in the fossil record: Lethaia, v. 48, p. 115124.10.1111/let.12092Google Scholar
Labandeira, C.C., Johnson, K.R., and Lang, P., 2002, Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound: Geological Society of America Special Paper 361, p. 297327.10.1130/0-8137-2361-2.297Google Scholar
Lestrel, P.E., 1997, Morphometrics of craniofacial form: A Fourier analytic procedure to describe complex morphological shapes, in Dixon, A., Hoyte, D.A.N., and Rönning, O., eds., Fundamentals of Craniofacial Growth: New York, CRC Press, p. 155187.Google Scholar
Linnaeus, C., 1753, Species plantarum: Stockholm, Laurentius Salvius.Google Scholar
Lucas, W.J., 1900, British Dragonflies (Odonata): London, L. Upcott Gill.10.5962/bhl.title.8022Google Scholar
Martens, A., 2001, Initial preference of oviposition sites: Discrimination between living and dead plant material in Sympecma fusca and Coenagrion caerulescens (Odonata: Lestidae, Coenagrionidae): European Journal of Entomology, v. 98, p. 121123.10.14411/eje.2001.021Google Scholar
Matushkina, N.A., 2007, Regular egg-positioning by an aeshnid species (Odonata, Aeshnidae) with comments on its phylogenetic value: Vestnik Zoologii, v. 41, p. 457462.Google Scholar
Matushkina, N.A., and Gorb, S.N., 2000, Patterns of endophytic egg-sets in damselflies (Odonata, Zygoptera): Vestnik Zoologii Supplement, v. 14, p. 152159.Google Scholar
Matushkina, N.A., and Lambret, P.H., 2011, Ovipositor morphology and egg laying behavior in the dragonfly Lestes macrostigma (Zygoptera: Lestidae): International Journal of Odonatology, v. 14, p. 6982.10.1080/13887890.2011.568190Google Scholar
Moisan, P., Labandeira, C.C., Matushkina, N.A., Wappler, T., Voigt, S., and Kerp, H., 2012, Lycopsid–arthropod associations and Odonatopteran oviposition on Triassic herbaceous Isoetites: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 344–345, p. 615.10.1016/j.palaeo.2012.05.016Google Scholar
Monteiro, L.R., and Reis, S.F.D., 1999, Princípios de morfometría geométrica: Ribeirao Preto, Brazil, Holos.Google Scholar
Navarro, N., Zatarain, X., and Montuire, S., 2004, Effects of morphometrics descriptor changes on statistical classification and morphospaces: Biological Journal of the Linnean Society, v. 83, p. 243260.10.1111/j.1095-8312.2004.00385.xGoogle Scholar
Peñalver, E., and Delclòs, X., 2004, Insectos del Mioceno inferior de Ribesalbes (Castellón, España). Interacciones planta-insecto: Treballs del Museu de Geologia de Barcelona, v. 12, p. 6995.Google Scholar
Petrulevičius, J.F., 2013, Palaeoenvironmental and palaeoecological implications from body fossils and ovipositions of Odonata from the Eocene of Patagonia, Argentina: Terrestrial Arthropod Reviews, v. 6, p. 5360.Google Scholar
Petrulevičius, J.F., 2017, A new burmagomphid dragonfly from the Eocene of Patagonia, Argentina: Acta Palaeontologica Polonica, v. 62, p. 779783.10.4202/app.00427.2017Google Scholar
Petrulevičius, J.F., and Gutiérrez, P.R., 2016, New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina: Arquivos Entomolóxicos, v. 16, p. 341358.Google Scholar
Petrulevičius, J.F., and Nel, A., 2003, Frenguelliidae, a new family of dragonflies from the earliest Eocene of Argentina (Insecta: Odonata): Phylogenetic relationships within Odonata: Journal of Natural History, v. 37, p. 29092917.Google Scholar
Petrulevičius, J.F., and Nel, A., 2009, First Cordulephyidae dragonfly in America: A new genus and species from the Paleogene of Argentina (Insecta: Odonata): Comptes Rendus Palevol, v. 8, p. 385388.10.1016/j.crpv.2008.12.004Google Scholar
Petrulevičius, J.F., and Nel, A., 2013, A new Frenguelliidae (Insecta: Odonata) from the early Eocene of Laguna del Hunco, Patagonia, Argentina: Zootaxa, v. 3616, p. 597600.10.11646/zootaxa.3616.6.6Google Scholar
Petrulevičius, J.F., Wappler, T., Nel, A., and Rust, J., 2011, The diversity of Odonata and their endophytic ovipositions from the upper Oligocene Fossillagerstätte of Rott (Rhineland, Germany): ZooKeys, v. 130, p. 6789.Google Scholar
Pott, C., Labandeira, C.C., Krings, M., and Kerp, H., 2008, Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria: Journal of Paleontology, v. 82, p. 778789.Google Scholar
Renaud, S., Michaux, J., Jaeger, J.J., and Auffray, J.C., 1996, Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: Non progressive evolutionary pattern in a gradual lineage: Paleobiology, v. 22, p. 255265.10.1017/S0094837300016201Google Scholar
Rohlf, F.J., 1990, Fitting curves to outlines, in Rohlf, F.J., and Bookstein, F.L., eds., Proceedings of the Michigan Morphometrics Workshop: Ann Arbor, University of Michigan Museum of Zoology, Special Publication 2, p. 167177.Google Scholar
Rohlf, F.J., and Archie, J.W., 1984, A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae): Systematic Zoology, v. 33, p. 302317.10.2307/2413076Google Scholar
Sarzetti, L.C., Labandeira, C.C., Muzón, J., Wilf, P., Cúneo, N.R., Johnson, K.R., and Genise, J.F., 2009, Odonatan endophytic oviposition from the Eocene of Patagonia: The ichnogenus Paleoovoidus and implications for behavioral stasis: Journal of Paleontology, v. 83, p. 431447.Google Scholar
Sawchyn, W.W., and Gillott, C., 1974, The life histories of three species of Lestes (Odonata: Zygoptera) in Saskatchewan: The Canadian Entomologist, v. 106, p. 12831293.10.4039/Ent1061283-12Google Scholar
Sheets, H.D., Covino, K.M., Panasiewicz, J.M., and Morris, S.R., 2006, Comparison of geometric morphometrics outline methods in the discrimination of age-related differences in feather shape: Frontiers in Zoology, v. 3, p. 15.10.1186/1742-9994-3-15Google Scholar
Swiderski, D.L., Zelditch, M.L., and Fink, W.L., 2002, Comparability, morphometrics and phylogenetic systematics, in MacLeod, N., and Forey, F., eds., Morphology, Shape and Phylogeny: London, Taylor and Francis, p. 6799.Google Scholar
Teaford, M.F., Lucas, P.W., Ungar, P.S., and Glander, K.E., 2006, Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata): American Journal of Physical Anthropology, v. 129, p. 99104.10.1002/ajpa.20225Google Scholar
Temple, J.T., 1992, The progress of quantitative methods in palaeontology: Palaeontology, v. 35, p. 475484.Google Scholar
Ubukata, T., 2004, Phylogenetic constraints and adaptive modification in shell outline of the Pectinidae (Bivalvia): An elliptic Fourier analysis: Japanese Journal of Malacology, v. 62, p. 149160.Google Scholar
Unger, F., 1850, Genera et Species Plantarum Fossilium: Wien, W. Braumüller.Google Scholar
Vasilenko, D.V., 2005, Damages on Mesozoic plants from the Transbaikalian locality Chernovskie Kopi: Paleontological Journal, v. 39, p. 628633.Google Scholar
Wesenberg-Lund, C., 1913, Mitteilungen aus den biologischen Süßwasserlaboratorien Hilleröd u. Lyngby (Dänemark). Nr. XVI. Odonaten Studien: Internationale Revue der Gesamten Hydrobiologie und Hydrographie, v. 6, p. 155228.Google Scholar
Wesenberg-Lund, C., 1943, Bemerkungen über die Biologie der Chironomiden: Entomologiske Meddelelser, v. 23, p. 179203.Google Scholar
Weyland, H., 1937, Beiträge zur Kenntnis derr rheinischen Tertiärflora. II. (Erste Ergänzungen und Berichtgungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge): Palaeontographica, v. 83, p. 67122.Google Scholar
White, R.J., Prentice, H.C., and Verwijst, T., 1988, Automated image acquisition and morphometrics description: Canadian Journal of Botany, v. 66, p. 450459.10.1139/b88-070Google Scholar
Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., and Obradovich, J.D., 2003, High plant diversity in Eocene South America: Evidence from Patagonia: Science, v. 300, p. 122125.Google Scholar
Williams, J.A., 1981, Fourier analysis: A new method for describing primate tooth shapes: Current Anthropology, v. 22, p. 423424.Google Scholar
Zeh, D.W., Zeh, J.A., and Smith, R.L., 1989, Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods: The Quarterly Review of Biology, v. 64, p. 147168.10.1086/416238Google Scholar
Zhang, Z.Q., 2013, Phylum Arthropoda, in Zhang, Z.Q., ed., Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness (Addenda 2013): Zootaxa, v. 3703, p. 1726.Google Scholar
Zherikhin, V.V., 2002, Insect trace fossils, in Rasnitsyn, A.P., and Quicke, L.J., eds., History of Insects: Dordrecht, Kluwer Academic, p. 303324.Google Scholar