Skip to main content Accessibility help

Geometric morphometrics to interpret the endophytic egg-laying behavior of Odonata (Insecta) from the Eocene of Patagonia, Argentina

  • Eugenia Romero-Lebrón (a1) (a2), Raquel M. Gleiser (a1) (a2) (a3) and Julián F. Petrulevičius (a1) (a4)


Although the order Odonata has a rich fossil record, many questions about its reproductive biology remain unanswered. There are two strategies of egg laying among odonates, exophytic and endophytic, the latter being one of the most revealing vestiges of plant–insect association in the fossil record. We assessed whether geometric morphometrics based on elliptical series of Fourier allow expression of variability of shape in traces of Odonata eggs within a leaf of Eucalyptus chubutensis (Berry) González (in part), González, 2009 (Myrtaceae) from Laguna del Hunco (Chubut, Argentina) (early Eocene) and whether this variability is consistent with the ichnotaxonomy of this material. We found that the largest variation corresponds to the compression of the shape while the remaining two components reflect variations in the apex position and its curvature, which changed according to the relative position of the traces in the leaf. There was no evidence that the hardness of the leaf would affect the shape of the egg trace. We postulate that these traces could have been produced by one single female: Variations in the pattern observable in the fossil of an originally three-dimensional structure are consistent with differences in the position of the eggs inserted by a single female who has flexed her abdomen to insert the eggs as she approaches the apex of the leaf (behavior observed also in extant dragonflies). For the first time, endophytic egg traces are analyzed with geometrical morphometrics, and this allows us to make inferences on the oviposition behavior of a female that lived around 52 million years ago.



Hide All
Adami-Rodrigues, K., Iannuzzi, R., and Pinto, I.D., 2004, Permian plant-insect interactions from a Gondwana flora of southern Brazil: Fossils and Strata, v. 51, p. 106125.
Adams, D.C., Rohlf, F.J., and Slice, D.E., 2004, Geometric morphometrics: Ten years of progress following the ‘revolution’: Italian Journal of Zoology, v. 71, p. 516.10.1080/11250000409356545
Asahina, S., 1934, Ecological observations on Epiophlebia superstes: Kontyû, v. 8, p. 103106.
Bertling, M., 2007, What's in a name? Nomenclature, systematics, ichnotaxonomy, in Miller, W. III, ed., Trace Fossils: Concepts, Problems, Prospects: Amsterdam, Elsevier, p. 8191.10.1016/B978-044452949-7/50131-5
Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J., et al. , 2006, Nombres para rastrear fósiles: Un enfoque uniforme: Lethaia, v. 39, p. 265286.
Béthoux, O., Galtier, J., and Nel, A., 2004, Earliest evidence of insect endophytic oviposition: Palaios, v. 19, p. 408413.10.1669/0883-1351(2004)019<0408:EEOIEO>2.0.CO;2
Choong, M.F., 1996, What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars: Functional Ecology, v. 10, p. 668674.10.2307/2390178
Christopher, R.A., and Waters, J.A., 1974, Fourier series as a quantitative descriptor of miospore shape: Journal of Paleontology, v. 48, p. 697709.
Corbet, P.S., 1962 (facsimile 1983), A Biology of Dragonflies: Oxford, Classey.
Corbet, P.S., 1980, Biology of Odonata: Annual Review of Entomology, v. 25, p. 189217.10.1146/annurev.en.25.010180.001201
Crampton, J.S., 1995, Elliptic Fourier shape analysis of fossil bivalves: Some practical considerations: Lethaia, v. 28, p. 179186.
Denis Ávila, D., 2014, Application of the elliptic Fourier functions to the description of avian egg shape: Revista de Biología Tropical, v. 62, p. 14691480.10.15517/rbt.v62i4.12992
Denis Ávila, D., and Olavarrieta, U., 2011, ¿Existe la isomorfía en los huevos de la familia Ardeidae (Aves, Ciconiiformes)?: Animal Biodiversity and Conservation, v. 34, p. 3545.
Ferrario, V.F., Sforza, C., Tartaglia, G.M., Colombo, A., and Serrao, G., 1999, Size and shape of the human first permanent molar: A Fourier analysis of the occlusal and equatorial outlines: American Journal of Physical Anthropology, v. 108, p. 281294.10.1002/(SICI)1096-8644(199903)108:3<281::AID-AJPA4>3.0.CO;2-#
Ferson, S., Rohlf, F.J., and Koehn, R.K., 1985, Measuring shape variation of two-dimensional outlines: Systematic Biology, v. 34, p. 5968.10.1093/sysbio/34.1.59
Foote, M., 1989, Perimeter-based Fourier analysis: A new morphometric method applied to the trilobite cranidium: Journal of Paleontology, v. 63, p. 880885.10.1017/S0022336000036556
Gnaedinger, S.C., Adami-Rodrigues, K., and Gallego, O.F., 2014, Endophytic ovipositions on leaves from the Late Triassic, northern Chile: Ichnotaxonomic, palaeobiogeographical and palaeoenvironmetal considerations: Geobios, v. 47, p. 221236.
González, C.C., 2009, Revisión taxonómica y biogeográfica de las familias de angiospermas dominantes de la “Flora del Hunco” (Eoceno temprano), Chubut, Argentina [Ph.D. dissertation]: Buenos Aires, Universidad de Buenos Aires, 174 p.
Guerrero-Arenas, R., Zúñiga-Marroquin, T., and Jiménez-Hidalgo, E., 2018, How much variation is in the shape of fossil pupation chambers? An exploratory geometric morphometric analysis of Fictovichnus gobiensis from the late Eocene of Oaxaca, southern Mexico: Boletín de la Sociedad Geológica Mexicana, v. 70, p. 361368.10.18268/BSGM2018v70n2a6
Haines, A.J., and Crampton, J.S., 2000, Improvements to the method of Fourier shape analysis as applied in morphometric studies: Palaeontology, v. 43, p. 765783.10.1111/1475-4983.00148
Hammer, Ø., and Harper, D.A.T., 2006, Morphometrics, in Hammer, Ø., and Harper, D.A.T., eds., Paleontological Data Analysis: Oxford, Blackwell Publishing, p. 78156.
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, Paleontological statistics software: Package for education and data analysis: Palaeontologia Electronica, v. 4, p. 19.
Hellmund, M., and Hellmund, W., 1998, Eilogen von Zygopteren (Insecta, Odonata, Coenagrionidae) in unteroligozänen Maarsedimenten von Hammerunterwiesenthal (Freistaat Sachsen): Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, v. 43, p. 281292.
Hinton, H.E.,1981, Biology of insect eggs: Oxford, Pergammon Press.
Iwata, H., and Ukai, Y., 2002, SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors: Journal of Heredity, v. 93, p. 384385.
Jödicke, R., 1997, Die Binsenjungfern und Winterlibellen Europas: Madgeburg, Germany, Westarp Wissenschaften.
Krassilov, V., and Silantieva, N., 2008, Systematic description of phyllostigmas, in Krassilov, V., and Rasnitsyn, A., eds., Plant-Arthropod Interactions: The Early Angiosperm History. Evidence from the Cretaceous of Israel: Leiden, Brill, p. 6575.10.1163/ej.9789004170711.1-229
Krassilov, V., Silantieva, N., Hellmund, M., and Hellmund, W., 2007, Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel: Cretaceous Research, v. 28, p. 803811.10.1016/j.cretres.2006.11.004
Kuhl, F.P., and Giardina, C.R., 1982, Elliptic Fourier features of a closed contour: Computer graphics and image processing, v. 18, p. 236258.10.1016/0146-664X(82)90034-X
Laaß, M., and Hoff, C., 2015, The earliest evidence of damselfly like endophytic oviposition in the fossil record: Lethaia, v. 48, p. 115124.10.1111/let.12092
Labandeira, C.C., Johnson, K.R., and Lang, P., 2002, Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound: Geological Society of America Special Paper 361, p. 297327.10.1130/0-8137-2361-2.297
Lestrel, P.E., 1997, Morphometrics of craniofacial form: A Fourier analytic procedure to describe complex morphological shapes, in Dixon, A., Hoyte, D.A.N., and Rönning, O., eds., Fundamentals of Craniofacial Growth: New York, CRC Press, p. 155187.
Linnaeus, C., 1753, Species plantarum: Stockholm, Laurentius Salvius.
Lucas, W.J., 1900, British Dragonflies (Odonata): London, L. Upcott Gill.10.5962/bhl.title.8022
Martens, A., 2001, Initial preference of oviposition sites: Discrimination between living and dead plant material in Sympecma fusca and Coenagrion caerulescens (Odonata: Lestidae, Coenagrionidae): European Journal of Entomology, v. 98, p. 121123.10.14411/eje.2001.021
Matushkina, N.A., 2007, Regular egg-positioning by an aeshnid species (Odonata, Aeshnidae) with comments on its phylogenetic value: Vestnik Zoologii, v. 41, p. 457462.
Matushkina, N.A., and Gorb, S.N., 2000, Patterns of endophytic egg-sets in damselflies (Odonata, Zygoptera): Vestnik Zoologii Supplement, v. 14, p. 152159.
Matushkina, N.A., and Lambret, P.H., 2011, Ovipositor morphology and egg laying behavior in the dragonfly Lestes macrostigma (Zygoptera: Lestidae): International Journal of Odonatology, v. 14, p. 6982.10.1080/13887890.2011.568190
Moisan, P., Labandeira, C.C., Matushkina, N.A., Wappler, T., Voigt, S., and Kerp, H., 2012, Lycopsid–arthropod associations and Odonatopteran oviposition on Triassic herbaceous Isoetites: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 344–345, p. 615.10.1016/j.palaeo.2012.05.016
Monteiro, L.R., and Reis, S.F.D., 1999, Princípios de morfometría geométrica: Ribeirao Preto, Brazil, Holos.
Navarro, N., Zatarain, X., and Montuire, S., 2004, Effects of morphometrics descriptor changes on statistical classification and morphospaces: Biological Journal of the Linnean Society, v. 83, p. 243260.10.1111/j.1095-8312.2004.00385.x
Peñalver, E., and Delclòs, X., 2004, Insectos del Mioceno inferior de Ribesalbes (Castellón, España). Interacciones planta-insecto: Treballs del Museu de Geologia de Barcelona, v. 12, p. 6995.
Petrulevičius, J.F., 2013, Palaeoenvironmental and palaeoecological implications from body fossils and ovipositions of Odonata from the Eocene of Patagonia, Argentina: Terrestrial Arthropod Reviews, v. 6, p. 5360.
Petrulevičius, J.F., 2017, A new burmagomphid dragonfly from the Eocene of Patagonia, Argentina: Acta Palaeontologica Polonica, v. 62, p. 779783.10.4202/app.00427.2017
Petrulevičius, J.F., and Gutiérrez, P.R., 2016, New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina: Arquivos Entomolóxicos, v. 16, p. 341358.
Petrulevičius, J.F., and Nel, A., 2003, Frenguelliidae, a new family of dragonflies from the earliest Eocene of Argentina (Insecta: Odonata): Phylogenetic relationships within Odonata: Journal of Natural History, v. 37, p. 29092917.
Petrulevičius, J.F., and Nel, A., 2009, First Cordulephyidae dragonfly in America: A new genus and species from the Paleogene of Argentina (Insecta: Odonata): Comptes Rendus Palevol, v. 8, p. 385388.10.1016/j.crpv.2008.12.004
Petrulevičius, J.F., and Nel, A., 2013, A new Frenguelliidae (Insecta: Odonata) from the early Eocene of Laguna del Hunco, Patagonia, Argentina: Zootaxa, v. 3616, p. 597600.10.11646/zootaxa.3616.6.6
Petrulevičius, J.F., Wappler, T., Nel, A., and Rust, J., 2011, The diversity of Odonata and their endophytic ovipositions from the upper Oligocene Fossillagerstätte of Rott (Rhineland, Germany): ZooKeys, v. 130, p. 6789.
Pott, C., Labandeira, C.C., Krings, M., and Kerp, H., 2008, Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria: Journal of Paleontology, v. 82, p. 778789.
Renaud, S., Michaux, J., Jaeger, J.J., and Auffray, J.C., 1996, Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: Non progressive evolutionary pattern in a gradual lineage: Paleobiology, v. 22, p. 255265.10.1017/S0094837300016201
Rohlf, F.J., 1990, Fitting curves to outlines, in Rohlf, F.J., and Bookstein, F.L., eds., Proceedings of the Michigan Morphometrics Workshop: Ann Arbor, University of Michigan Museum of Zoology, Special Publication 2, p. 167177.
Rohlf, F.J., and Archie, J.W., 1984, A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae): Systematic Zoology, v. 33, p. 302317.10.2307/2413076
Sarzetti, L.C., Labandeira, C.C., Muzón, J., Wilf, P., Cúneo, N.R., Johnson, K.R., and Genise, J.F., 2009, Odonatan endophytic oviposition from the Eocene of Patagonia: The ichnogenus Paleoovoidus and implications for behavioral stasis: Journal of Paleontology, v. 83, p. 431447.
Sawchyn, W.W., and Gillott, C., 1974, The life histories of three species of Lestes (Odonata: Zygoptera) in Saskatchewan: The Canadian Entomologist, v. 106, p. 12831293.10.4039/Ent1061283-12
Sheets, H.D., Covino, K.M., Panasiewicz, J.M., and Morris, S.R., 2006, Comparison of geometric morphometrics outline methods in the discrimination of age-related differences in feather shape: Frontiers in Zoology, v. 3, p. 15.10.1186/1742-9994-3-15
Swiderski, D.L., Zelditch, M.L., and Fink, W.L., 2002, Comparability, morphometrics and phylogenetic systematics, in MacLeod, N., and Forey, F., eds., Morphology, Shape and Phylogeny: London, Taylor and Francis, p. 6799.
Teaford, M.F., Lucas, P.W., Ungar, P.S., and Glander, K.E., 2006, Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata): American Journal of Physical Anthropology, v. 129, p. 99104.10.1002/ajpa.20225
Temple, J.T., 1992, The progress of quantitative methods in palaeontology: Palaeontology, v. 35, p. 475484.
Ubukata, T., 2004, Phylogenetic constraints and adaptive modification in shell outline of the Pectinidae (Bivalvia): An elliptic Fourier analysis: Japanese Journal of Malacology, v. 62, p. 149160.
Unger, F., 1850, Genera et Species Plantarum Fossilium: Wien, W. Braumüller.
Vasilenko, D.V., 2005, Damages on Mesozoic plants from the Transbaikalian locality Chernovskie Kopi: Paleontological Journal, v. 39, p. 628633.
Wesenberg-Lund, C., 1913, Mitteilungen aus den biologischen Süßwasserlaboratorien Hilleröd u. Lyngby (Dänemark). Nr. XVI. Odonaten Studien: Internationale Revue der Gesamten Hydrobiologie und Hydrographie, v. 6, p. 155228.
Wesenberg-Lund, C., 1943, Bemerkungen über die Biologie der Chironomiden: Entomologiske Meddelelser, v. 23, p. 179203.
Weyland, H., 1937, Beiträge zur Kenntnis derr rheinischen Tertiärflora. II. (Erste Ergänzungen und Berichtgungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge): Palaeontographica, v. 83, p. 67122.
White, R.J., Prentice, H.C., and Verwijst, T., 1988, Automated image acquisition and morphometrics description: Canadian Journal of Botany, v. 66, p. 450459.10.1139/b88-070
Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., and Obradovich, J.D., 2003, High plant diversity in Eocene South America: Evidence from Patagonia: Science, v. 300, p. 122125.
Williams, J.A., 1981, Fourier analysis: A new method for describing primate tooth shapes: Current Anthropology, v. 22, p. 423424.
Zeh, D.W., Zeh, J.A., and Smith, R.L., 1989, Ovipositors, amnions and eggshell architecture in the diversification of terrestrial arthropods: The Quarterly Review of Biology, v. 64, p. 147168.10.1086/416238
Zhang, Z.Q., 2013, Phylum Arthropoda, in Zhang, Z.Q., ed., Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness (Addenda 2013): Zootaxa, v. 3703, p. 1726.
Zherikhin, V.V., 2002, Insect trace fossils, in Rasnitsyn, A.P., and Quicke, L.J., eds., History of Insects: Dordrecht, Kluwer Academic, p. 303324.

Geometric morphometrics to interpret the endophytic egg-laying behavior of Odonata (Insecta) from the Eocene of Patagonia, Argentina

  • Eugenia Romero-Lebrón (a1) (a2), Raquel M. Gleiser (a1) (a2) (a3) and Julián F. Petrulevičius (a1) (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed