Skip to main content Accessibility help

Decaying of Artemia salina in clay colloids: 14-month experimental formation of subfossils

  • Elena B. Naimark (a1), Maria A. Kalinina (a2), Alexander V. Shokurov (a2), Alexander V. Markov (a1) (a3) and Natalia M. Boeva (a4)...


The mechanism that guides the formation of exceptionally preserved fossils with soft tissues variously displayed is a paramount challenge to paleontology. The key question for exceptional preservation is the nature of the slowdown of decay and acceleration of soft tissue mineralization. Here we report the experimental formation of subfossils of the brine shrimp Artemia salina (Crustacea, Branchiopoda), which were produced during 14 months of aging in a kaolinite clay sediment. EDS/SEM elemental analyses showed that the subfossils were preserved as thin clay-organic replicas that displayed fine anatomical details. Decomposition in the clay-colloidal solution established highly heterogeneous acidic conditions, with the lowest pH typically found in the vicinity of the buried organisms, and visually manifested in patchy coloration of the sediment. Elevated acidity is likely what ultimately slowed the decay. An acidic environment increases the rate of clay destruction and, consequently, the diffusion rate decline. As a result, the acidic products quickly accumulate around a buried body; this in turn inhibits bacterial proliferation, accelerates the acidic hydrolysis of clay and, accordingly, the release of tanning and mineralizing agents. The subfossils remained stable under experimental high pressure and temperature. These model subfossils exhibit features that are typical of some Lagerstätten fossils preserved in fine-grained sediments.



Hide All
Allison, P. A., 1988, The role of anoxia in the decay and mineralization of proteinaceous macro-fossils: Paleobiology, v. 14, p. 139154.
Allison, P. A., and Briggs, D. E. G., 1993, Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic: Geology, v. 21, p. 527530.
Allison, P. A., Maeda, H., Tuzino, T., and Maeda, Y., 2008, Exceptional preservation within Pleistocene lacustrine sediments of Shiobara, Japan: Palaios, v. 23, p. 260266.
Birger, K., 1993, Measurement of plankton O2 respiration in gas-tight plastic bags: Marine Ecology Progress Series, v. 94, p. 155163.
Briggs, D. E. G., 1995, Experimental taphonomy: Palaios, v. 10, p. 539550.
Briggs, D. E. G., 2003, The role of decay and mineralization in the preservation of soft-bodied fossils: Annual Review of Earth and Planetary Sciences, v. 31, p. 275301.
Briggs, D. E. G., and Kear, A. J., 1994, Decay and mineralization of shrimps: Palaios, v. 9, p. 431456.
Butterfield, N. J., 1990, Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale: Paleobiology, v. 16, p. 272286.
Butterfield, N. J., 1994, Burgess Shale-type fossils from a lower Cambrian shallow-shelf sequence in northwestern Canada: Nature, v. 369, p. 477479.
Butterfield, N. J., 1995, Secular distribution of Burgess Shale-type preservation: Lethaia, v. 28, p. 113.
Butterfield, N. J., 2003, Exceptional fossil preservation and the Cambrian explosion: Integrative and Comparative Biology, v. 43, p. 166177.
Butterfield, N. J., Baltasar, U., and Wilson, L. A, 2007, Fossil diagenesis in the Burgess Shale: Palaeontology, v. 50, p. 537543.
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S., 2012, Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization, aluminosilicification, and carbonaceous compression: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 326–328, p. 109117.
Cama, J., Metz, V., and Ganor, J., 2002, The effect of pH and temperature on kaolinite dissolution rate under acidic conditions: Geochimica et Cosmochimica Acta, v. 66, p. 39133926.
Chin, P. K. F., and Mills, G. L., 1991, Kinetics and mechanisms of kaolinite dissolution: effects of organic ligands: Chemical Geology, v. 90, p. 307317.
Covington, D., 1997, Modern tanning chemistry: Chemical Society Reviews, v. 26, p. 111126.
Covington, D., and Sykes, R. L., 1984, The use of aluminum salts in tanning: Journal of the American Leather Chemists Association, v. 79, p. 7293.
Drever, J. I., and Vance, G. F., 1994, Role of soil organic acids in mineral weathering processes, in Pittman, E. D., and Lewan, M. D., eds., Organic Acids in Geological Processes, Springer, Berlin-Heidelberg, p. 138161.
Dzik, J., Zhu, M-Y., and Zhoa, Y-L., 1997, Mode of life of the Middle Cambrian eldonioid lophophorate Rotadiscus : Paleontology, v. 40, p. 385396.
Ehrlich, H., Rigby, J. K., Botting, J. P., Tsurkan, M., Werner, C., Schwille, P., Petrasek, Z., Pisera, A., Simon, P., Sivkov, V., Vyalikh, D., Molodtsov, S. L., Kurek, D., Kammer, M., Hunoldt, S., Born, R., Stawski, D., Steinhof, A., and Geisler-Wierwille, T., 2013, Discovery of 505 – million-year old chitin in the basal demosponge Vauxia gracilenta : Nature Scientific Reports, v. 3, p. 3497, doi: 10.1038/SREP03497.
Fisher, D. C., Tikhonov, A. N., Kosintsev, P. A., Rountrey, A. N., Buigues, B., and van der Plicht, J., 2012, Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal peninsula, northwest Siberia: Quaternary International, v. 255, p. 94105.
Forchielli, A., Steiner, M., Kasbohm, J., Hu, S., and Keupp, H., 2014, Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in south China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 398, p. 5985.
Gabbott, S. E., 1998, Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals: Palaeontology, v. 41, p. 631667.
Gabbott, S. E., Zalasiewicz, J., and Collins, D., 2008, Sedimentation of the phyllopod bed within the Cambrian Burgess Shale formation of British Columbia: Journal of the Geological Society of London, v. 165, p. 307318.
Gabbott, S. E., Beecroft, T. I. E., Murdock, D. J. E., and Purnell, M. A., 2014, From lab to Lagerstätten: does sediment type bias the preservation of anatomical characters?: 4th International Palaeontological Congress, Mendoza, Argentina, Abstracts, v. 1, p. 301.
Gaines, R. R., Kennedy, M. J., and Droser, M. L., 2005, A new hypothesis for organic preservation of Burgess Bhale taxa in the middle Cambrian Wheeler Formation, House Range, Utah: Palaeoecology, Palaeogeography, Palaeoclimatology, v. 220, p. 193205.
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., and Peng, J., 2012, Mechanism for Burgess Shale-Type preservation: PNAS, v. 109, p. 51805184.
Gamez Vintaned, J. A., Liňán, E., and Zhuravlev, A. Yu., 2011, A new Early Cambrian lobopod-bearing animal (Murero, Spain) and the problem of the Ecdysozoan early diversification, in Pontarotti, P., ed., Evolutionary Biology—Concepts, Biodiversity, Macroevolution and Genome Evolution: Springer-Verlag Press Berlin-Heidelberg, p. 193219.
Gostling, N. J., Dong, X., and Donoghue, P. C. J., 2009, Ontogeny and taphonomy: an experimental taphonomy study of the development of the brine shrimp Artemia salina : Paleontology, v. 52, p. 169186.
Grogan, E.D., and Lund, R., 2002, The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) and a model for its deposition: Geodiversitas, v. 24, p. 295315.
Guggenberger, G., and Kaiser, K., 2003, Dissolved organic matter in soil: challenging the paradigm of sorptive preservation: Geoderma, v. 113, p. 293310.
Harvey, T. H. P., Vélez, M. I., and Butterfield, N. J., 2012, Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation: PNAS, v. 109, p. 15891594.
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C., and Bengtson, S., 2011, Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists: Science, v. 334, p. 16961699.
Ivantsov, A. Yu., Zhuravlev, A. Yu., Krassilov, V. A., Leguta, A. V., Melnikova, L. M., Urbanek, A., Ushatinskaya, G. T., and Malakhovskaya, Y., 2005, Unique Sinsk Localities of Early Cambrian Organisms (Siberian Platform) (Palaeontological Institute. V. 284). Nauka, Moscow, 143 p.
Kaiser, K., and Guggenberger, G., 2000, The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils: Organic Geochemistry, v. 31, p. 711725.
Kennedy, M., Droser, M., Mayer, L., Pevear, D., and Mrofka, D., 2006, Late Precambrian Oxygenation: Inception of the clay Mineral Factory: Science, v. 311, p. 14461449.
Lombardi, D., Russe, J. D., and Keller, W. D., 1987, Compositional and structural variation in the size fractions of a sedimentary and a hydrothermal kaolinite: Clays and Clay Minerals, v. 35, p. 321335.
Lin, J.-P., Zhao, Y.-L., Rahman, I. A., Xiao, S., and Wang, Y., 2010, Bioturbation in Burgess Shale-type Lagerstätten — Case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 292, p. 245256.
Ma, X., Hou, X., Edgecombe, G.D., and Strausfeld, N.J., 2012, Complex brain and optic lobes in anearly Cambrian arthropod: Nature, v. 490, p. 258261.
Martin, D., Briggs, D. E. G., and Parkes, R. J., 2004, Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils: Journal of the Geological Society, London, v. 161, p. 735738.
Mellman, I., Fuchs, R., and Helenius, A., 1986, Acidification of the endocytic and exocytic pathways: Annual Review Biochemistry, v. 55, p. 663700.
Midgley, D., and Torrens, K., 1978, Potentiometric Water Analysis, New York, Wiley, 120 p.
Murdock, D. J. E., Gabbott, S. E., and Purnell, M. A., 2014, Beyond the bucket: testing the effect of experimental design on rate and sequence of decay: 4th International Palaeontological Congress, Mendoza, Abstracts, v. 1, p. 306.
O′Brien, L. J., and Caron, J-B., 2012, A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada: PLoS ONE, v. 7, p. e29233.
Orr, P. J., Briggs, D. E. G, and Kearns, S. L., 1998, Cambrian Burgess Shale animals replicated in clay minerals: Science, v. 281, p. 11731175.
Orr, P. J., Kearns, S. L., and Briggs, D. E. G., 2009, Elemental mapping of exceptionally preserved ‘carbonaceous compression’ fossils: Palaeogeography, Palaeoecology, Palaeoclimatology, v. 277, p. 18.
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A., 2008, Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks: Geology, v. 36, p. 855858.
Painter, T., 1991, Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties: Carbohydrate Polymers, v. 15, no. 2, p. 123142.
Pan, Y., Sha, J., and Fürsich, F. T., 2014, A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis: Palaios, v. 29, p. 363377.
Petrovich, R., 2001, Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities: American Journal of Science, v. 301, p. 683726.
Peverill, K. I., Sparrow, L. A., and Reuter, D. J., 1999, Soil analysis: an Interpretation Manual: Melbourne, CSIRO Publishing, 388 p.
Pushie, M. J., Pratt, B. R., Macdonald, T. C., George, G. N., and Pickering, I. J., 2014, Evidence for biogeneick copper (hemocyanin) in the Middle Cambrian arthropod Marella from Burgess Shale: Palaios, v. 29, p. 512524.
Ragland, J. L., and Coleman, N. T., 1960, The hydrolysis of aluminum salts in clay and soil systems: Soil Science Society of America, v. 24, p. 457460.
Sagemann, J., Bale, S. J., Briggs, D. E. G., and Parkes, R. J., 1999, Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach: Geochimica et Cosmochimica Acta, v. 63, p. 10831095.
Sansom, R. S., Gabbott, S. E., and Purnell, M. A., 2010, Non-random decay of chordate characters causes bias in fossil interpretation: Nature, v. 463, p. 797800.
Sansom, R. S., Gabbott, S. E., and Purnell, M. A., 2013, Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation: Palaeontology, v. 56, p. 457474.
Savrda, C. E., Bingham, P. S., Knight, T. K., and Lewis, R. D., 2009, The prospect of compact estuarine Lagerstätten: Sedimentary Record, v. 7, p. 48.
Schofield, R. K., and Taylor, A. W., 1954, The measurement of soil pH: Soil Science Society of America, v. 19, p. 164167.
Shoemaker, H. E., Mclean, E. O., and Pratt, P. F., 1961, Buffer methods for determination of lime requirement of soils with appreciable amount of exchangeable aluminum: Soil Science Society of America Proceedings, v. 25, p. 274277.
Siveter, Da. J., Siveter, De. J., Sutton, M. D., and Briggs, D. E. G., 2007, Brood care in a Silurian ostracod: Proceedings of the Royal Society B, v. 274, p. 465469.
Tan, K. H., 1980, The release of silicon, aluminum, and potassium during decomposition of soil minerals by humic acid: Soil Science, v. 129, p. 511.
Thomas, G. W., 1982, Exchangeable cations, in Page, A.L., ed., Methods of Soil Analysis. Part 2: Chemical and Mineralogical Properties, Madison: Wisconsin, American Society of Agronomy, p. 159165.
Tikhonov, V. N., 1971, Analytical chemistry of Aluminum: Nauka, Moscow, 266 p.
Towe, K. M., 1996, Fossil preservation in the Burgess Shale: Lethaia, v. 29, p. 107108.
Vannier, J., 2012, Gut contents as direct indicators for trophic relationships in the Cambrian Marine Ecosystem: PLoS ONE, v. 7, p. e52200.
Vinther, J., Stein, M., Longrich, N. R., and Harper, D. A. T., 2014, A suspension-feeding anomalocarid from the Early Cambrian: Nature, v. 507, p. 496499.
Webster, M., Gaines, R. R., and Hughes, N. C., 2008, Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 264, p. 100122.
Whittle, R. J., Gabbott, S. E., Aldridge, R. J., and Theron, J. N., 2007, Taphonomy and palaeoecology of a Late Ordovician caryocaridid from the Soom Shale Lagerstätte, South Africa: Palaeoecology Palaeogeography Palaeoclimatology, v. 251, p. 383397.
Wilson, L. A., and Butterfield, N. J., 2014, Sediment effects on the preservation of Burgess shale-type compression fossils: Palaios, v. 29, p. 145153.
Yuan, T. L., 1963, Some relationships among hydrogen, aluminum, and pH in solution and soil systems: Soil Science, v. 95, p. 155163.
Zhang, X., and Briggs, D. E. G., 2007, The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale: Lethaia, v. 40, p. 161173.
Zhu, M., Zhang, J. M., and Li, G. X., 2001, Sedimentary environments of the Early Cambrian Chengjiang Biota: Sedimentology of the Yu′anshan Formation in Chengjiang County, Eastern Yunnan: Acta Paleontologica Sinica, v. 40, p. 80105.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed