Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T08:50:02.779Z Has data issue: false hasContentIssue false

Cuticular structure in Costacopluma mexicana Vega and Perrilliat, from the Difunta Group (Maastrichtian) of northeastern Mexico, and its paleoenvironmental implications

Published online by Cambridge University Press:  20 May 2016

Francisco J. Vega
Affiliation:
1Instituto de Geología, Universidad Nacional Autónoma de México, México D.F. 04510, México
Rodney M. Feldmann
Affiliation:
2Department of Geology, Kent State University, Kent, Ohio 44242
Victor M. Davila-Alcocer
Affiliation:
1Instituto de Geología, Universidad Nacional Autónoma de México, México D.F. 04510, México

Abstract

Examination of extremely well-preserved cuticle samples from the Maastrichtian retroplumid crab, Costacopluma mexicana Vega and Perrilliat, collected in the Difunta Group in Nuevo León State, Mexico, documents the preservation of corpses in an anoxic microenvironment produced by decomposition of soft tissue of the organisms. All four cuticular layers, epicuticle, exocuticle, endocuticle, and membranous layer, as well as pore canals and tegumental glands, can be recognized. There is no evidence of resorption that accompanies molting. X-ray analysis of the cuticle indicates that the organic matrix was replaced by carbonate-hydroxyapatite, that the original calcitic material was replaced by quartz, and that the replacement proceeded from the outer and inner surfaces of the cuticle toward the interior. The specimens were interpreted to have been preserved in an organic-rich, restricted lagoon in which pH was changed by periodic influxes of fresh water.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, D. E. 1980. Molting and growth, p. 91163. In Cobb, J. S. and Phillips, B. F. (eds.), The Biology and Management of Lobsters, 1. Academic Press, New York.CrossRefGoogle Scholar
Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14:139154.Google Scholar
Bishop, G. A. 1983. Fossil decapod Crustacea from the Late Cretaceous Coon Creek Formation, Union County, Mississippi. Journal of Crustacean Biology, 3:417430.Google Scholar
Bishop, G. A. 1986. Taphonomy of the North American decapods. Journal of Crustacean Biology, 6:326355.Google Scholar
Cooper, J. D. 1971. Maestrichtian (Upper Cretaceous) biostratigraphy, Maverick County, Texas and northern Coahuila, Mexico. Gulf Coast Association of Geological Societies Transactions, 21:5765.Google Scholar
Dalingwater, J. E. 1977. Cuticular ultrastructure of a Cretaceous decapod crustacean. Geological Journal, 12:2532.Google Scholar
Dennell, R. 1960. Integument and exoskeleton, p. 449472. In Waterman, T. H. (ed.), The Physiology of Crustacea, 1. Academic Press, New York.Google Scholar
Drach, P. 1939. Mue et cycle d'intermue chez les Crustacés décapodes. Annals de l'Institut océanographique, Monaco, 19 (Fascicle 3):103391.Google Scholar
Feldmann, R. M., and Tshudy, D. 1987. Ultrastructure in cuticle from Hoploparia stokesi (Decapoda: Nephropidae) from the Lopez de Bartodano Formation (Late Cretaceous–Paleocene) of Seymour Island, Antarctica. Journal of Paleontology, 61:11941203.CrossRefGoogle Scholar
Förster, R., and Mundlos, R. 1982. Krebse aus dem alttertiär von Helmstedt und Handdorf (Niedersachsen). Palaeontolographica, A, 179:148184.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R400R651. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hadley, N. F. 1986. The arthropod cuticle. Scientific American, 225(1):104112.CrossRefGoogle Scholar
Horne, R. R., and Taylor, B. J. 1969. Calcareous concretions in the Lower Cretaceous sediments of southeastern Alexander Island. British Antarctic Survey Bulletin, 12:1932.Google Scholar
Krumbein, W. C., and Garrels, R. M. 1952. Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. Journal of Geology, 60:133.CrossRefGoogle Scholar
Lafon, M. 1943. Recherches biochimiques et physiologiques sur le squelette tégumentaire des Arthropodes. Annals Sciences naturelles, Zoologie, 11:113146.Google Scholar
McBride, E. F., Weidie, A. E., Wolleben, J. A., and Laudon, R. 1974. Stratigraphy and structure of the Parras and La Popa basins, northeastern Mexico. Geological Society of America Bulletin, 84:16031622.Google Scholar
Mundlos, R. 1975. Ökologie, Biostratinomie, und Diagenese brachyurer Krebse aus dem Alt-Tertiär von Helmstedt (Niedersachsen, BRD). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 148:252271.Google Scholar
Neville, A. C., and Berg, C. W. 1971. Cuticle ultrastructure of a Jurassic crustacean (Eryma stricklandi) . Palaeontology, 14:201205.Google Scholar
Neville, A. C., Thomas, M. G., and Zelazny, B. 1969. Pore canal shape related to molecular architecture of arthropod cuticle. Tissue and Cell, 1:183200.Google Scholar
Passano, L. M. 1960. Molting and its control, p. 473546. In Waterman, T. H. (ed.), The Physiology of Crustacea, 1. Academic Press, New York.Google Scholar
Plotnick, R. E., Baumiller, T., and Wetmore, K. L. 1988. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:2743.CrossRefGoogle Scholar
Plotnick, R. E., McCarroll, S., and Powell, E. 1990. Crab death assemblages from Laguna Madre and vicinity, Texas. Palaios, 5:8187.Google Scholar
Roer, R., and Dillaman, R. 1984. The structure and calcification of the crustacean cuticle. American Zoologist, 24:893909.CrossRefGoogle Scholar
Rolfe, W. D. I. 1962. The cuticle of some Middle Silurian ceratiocaridid Crustacea from Scotland. Palaeontology, 5:3051.Google Scholar
Russell, E. E., Keady, D. M., Mancini, E. A., and Smith, C. E. 1982. Upper Cretaceous in the Lower Mississippi Embayment of Tennessee and Mississippi. Lithostratigraphy and biostratigraphy. Earth Enterprises, Incorporated, Tuscaloosa, Alabama, 50 p.Google Scholar
de Saint Laurent, M. 1989. La nouvelle superfamille des Retroplumoidea Gill, 1894 (Decapoda, Brachyura): systématique, affinités et évolution, p. 103179. In Forest, J. (ed.), Résultats des Campagnes Musorstom, Volume 5. Mémoires, Muséum Nationalle d'Histoire Naturelle, (A).Google Scholar
Schäfer, W. 1951. Fossilisations-Bedingungen brachyurer krebse. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 485:221238.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. University of Chicago Press, Chicago, 568 p.Google Scholar
Skinner, D. M. 1962. The structure and metabolism of a crustacean integumentary tissue during a molt cycle. Biological Bulletin, 123:635647.Google Scholar
Taylor, B. J. 1971. Thallophyte borings in phosphatic fossils from the Lower Cretaceous of south-east Alexander Island, Antarctica. Palaeontology, 14:94302.Google Scholar
Taylor, B. J. 1973. The cuticle of Cretaceous macrurous Decapoda from Alexander and James Ross Islands. Antarctic Survey Bulletin, 35:91100.Google Scholar
Travis, D. F. 1955a. The molting of the spiny lobster, Panulirus argus Latreille. II. Pre-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biological Bulletin, 108:88112.Google Scholar
Travis, D. F. 1955b. The molting of the spiny lobster, Panulirus argus Latreille. III. Physiological changes which occur in the blood and urine during the normal molting cycle. Biological Bulletin, 109:485503.Google Scholar
Travis, D. F. 1963. Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. New York Academy of Sciences, Annals, 109:485503.Google Scholar
Vega, F. J., and Feldmann, R. M. 1991. Fossil crabs (Crustacea, Decapoda) from the Maastrichtian Difunta Group, northeastern Mexico. Carnegie Museum, Annals, 60:163177.Google Scholar
Vega, F. J., and Perrilliat, M. C. 1989a. La presencia del Eoceno marino en la cuenca de La Popa (Grupo Difunta), Nuevo León; orogenia postypresiana. México. Universidad Nacional Autónoma, Instituto de Geología, Revista, 8 (1):6770.Google Scholar
Vega, F. J., and Perrilliat, M. C. 1989b. Una especie nueva de cangrejo del género Costacopluma (Crustacea: Decapoda: Retroplumidae) del Maastrichtiano de Nuevo León, México. Universidad Nacional Autónoma, Instituto de Geología, Revista, 8:8487.Google Scholar
Vega, F. J., and Perrilliat, M. C. 1989c. Moluscos del Maastrichtiano de la Sierra El Antrisco, Nuevo León, México. Universidad Nacional Autónoma, Instituto de Geología, Paleontología Mexicana, 55:164.Google Scholar
Via, L. 1982. Nueva contribución al estudio paleontológico de la superfamilia Ocypodoidea (Crustáceos Decápodos). Boletín Geológico y Minero, 43:115119.Google Scholar
Wolleben, J. A. 1977. Paleontology of the Difunta Group (Upper Cretaceous–Tertiary) in northern Mexico. Journal of Paleontology, 51:373398.Google Scholar