Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T20:56:14.930Z Has data issue: false hasContentIssue false

Corallite increase and mural pores in Lichenaria (Tabulata, Ordovician)

Published online by Cambridge University Press:  20 May 2016

Robert J. Elias
Affiliation:
1Department of Geological Sciences, The University of Manitoba, Winnipeg R3T 2N2, Canada,
Dong-Jin Lee
Affiliation:
2Earth and Environmental Sciences, Andong National University, Andong 760-749, Korea,
Sung-Kyu Woo
Affiliation:
1Department of Geological Sciences, The University of Manitoba, Winnipeg R3T 2N2, Canada,

Abstract

Lichenaria may be a representative of the most primitive stock of tabulate corals. The degree of paleobiologic complexity discovered in L. globularis and L. grandis is therefore surprising. Six types of corallite increase are recognized. All are lateral, which is the predominant mode in tabulates. Most types, however, are unique or are comparable to those in few other Ordovician taxa. Only Type 1 (L. globularis), yielding a single offset with a simple basal mural pore, is typical of tabulates. In Type 2 (L. globularis), one parent produces two offsets simultaneously, whereas in Type 3 (L. globularis), two offsets arise from separate parents at nearly the same time and join via a connective mural pore. Types 4 (L. globularis, L. grandis), 5 (L. grandis), and 6 (L. globularis, L. grandis), respectively, involve one, two, and two to four corallites in addition to the parent, which join via a connective mural pore at the site of offsetting.

Several features of L. globularis and L. grandis point to unexpectedly high levels of colony integration. Continuously fused common walls lacking back-to-back epithecae suggest soft tissue continuity among polyps above the corallum. Connective mural pores indicate temporary fusion of polyps. Coordinated behavior of polyps is suggested by the development of conjoined offsets from two parents during Type 3 increase, and by fusion during Types 4 to 6 increase. Attempts at certain types of increase sometimes failed to yield offsets, suggesting expendability of incipient buds, perhaps reflecting subjugation of individuals for the good of the colony.

In light of this study, genera that have previously been included in Lichenariidae and Lichenariida require reassessment and their phylogenetic relationships should be reconsidered. Unfortunately, this is hindered because fundamental characters such as corallite increase and wall structure remain inadequately known in most early tabulates.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, B.-Y. 2005. Morphometrics and paleobiology of cateniform corals from the Upper Ordovician Red River Formation, southern Manitoba, Canada. Unpublished Ph.D. dissertation, Andong National University, Andong, Korea, 221 p.Google Scholar
Bassler, R. S. 1932. The stratigraphy of the Central Basin of Tennessee. Tennessee Division of Geology Bulletin, 38, 268 p.Google Scholar
Bassler, R. S. 1935. Descriptions of Paleozoic fossils from the Central Basin of Tennessee. Washington Academy of Sciences Journal, 25:403409.Google Scholar
Bassler, R. S. 1950. Faunal lists and descriptions of Paleozoic corals. Geological Society of America Memoir, 44, 315 p.Google Scholar
Coates, A. G. and Oliver, W. A. Jr. 1973. Coloniality in zoantharian corals, p. 327. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies; Development and Function Through Time. Dowden, Hutchinson & Ross, Inc., Stroudsburg.Google Scholar
Dana, J. D. 1846. Structure and Classification of Zoophytes: U.S. Exploring Expedition During the Years 1838, 1839, 1840, 1841, 1842 Under the Command of Charles Wilkes, U.S.N.; Vol. 7. Lea and Blanchard, Philadelphia, 740 p.Google Scholar
Flower, R. H. 1961. Pt. I, Montoya and related colonial corals. New Mexico State Bureau of Mines and Mineral Resources Memoir, 7:197.Google Scholar
Flower, R. H. and Duncan, H. M. 1975. Some problems in coral phylogeny and classification, p. 175192. In Pojeta, J. Jr. and Pope, J. K. (eds.), Studies in Paleontology and Stratigraphy. Bulletins of American Paleontology, 67(287).Google Scholar
Hill, D. 1981. Rugosa and Tabulata, Volume 2, p. F379F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata, Supplement 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Holland, S. M. and Patzkowsky, M. E. 1997. Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research, 67:250263.Google Scholar
Holland, S. M. and Patzkowsky, M. E. 1998. Sequence stratigraphy and relative sea-level history of the Middle and Upper Ordovician of the Nashville Dome, Tennessee. Journal of Sedimentary Research, 68:684699.Google Scholar
Jun, Y.-H. 1999. Growth characteristics in Manipora and their phylogenetic implications. Unpublished M.Sc. thesis, Andong National University, Andong, Korea, 69 p. (In Korean with English abstract)Google Scholar
Kim, A. I. 1974. O filogenii i polozhenii v sisteme nekotorykh tabulyatomorfnykh korallov, p. 118122. In Sokolov, B. S. (ed.), Drevnie Cnidaria, Volume I, Nauka, Sibirskoe Otdelenie, Novosibirsk.Google Scholar
Lafuste, G. and Plusquellec, Y. 1985. Structure et microstructure de quelques Micheliniidae et Michelinimorphes (Tabulata paléozoïques). Bulletin du Muséum national d'Histoire naturelle Paris, Ser. 4, Sec. C, 7(1): 1363.Google Scholar
Laub, R. S. 1984. Lichenaria Winchell & Schuchert, 1895, Lamottia Raymond, 1924 and the early history of the tabulate corals, p. 159163. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Lee, D.-J. and Elias, R. J. 2000. Paleobiologic and evolutionary significance of corallite increase and associated features in Saffordophyllum newcombae (Tabulata, Late Ordovician, southern Manitoba). Journal of Paleontology, 74:404425.2.0.CO;2>CrossRefGoogle Scholar
Lee, D.-J. and Elias, R. J. 2004. Paleobiologic features of Trabeculites maculatus (Tabulata, Late Ordovician, southern Manitoba). Journal of Paleontology, 78:10561071.2.0.CO;2>CrossRefGoogle Scholar
Lee, D.-J. and Noble, J. P. A. 1988. Evaluation of corallite size as a criterion for species discrimination in favositids. Journal of Paleontology, 62:3240.CrossRefGoogle Scholar
Leslie, S. A. and Bergström, S. M. 1995. Revision of the North American late Middle Ordovician standard stage classification and timing of the Trenton transgression based on K-bentonite bed correlation, p. 4954. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Pacific Section Society for Sedimentary Geology (SEPM), Book 77.Google Scholar
Baoyu, Lin. 1984. New developments in coral biostratigraphy of the Ordovician of China, p. 444447. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Baoyu, Lin, Yongyi, Tchi, Chuntai, Jin, Yaoxi, Li, and Youyin, Yan. 1988. Monograph of Palaeozoic Corals: Tabulatomorphic Corals, Vol. 1. Geological Publishing House, Beijing, 467 p. (In Chinese)Google Scholar
Baoyu, Lin and Webby, B. D. 1989. Biogeographic relationships of Australian and Chinese Ordovician corals and stromatoporoids, p. 207217. In Jell, P. A. and Pickett, J. W. (eds.), Fossil Cnidaria 5. Association of Australasian Palaeontologists Memoir 8.Google Scholar
Milne-Edwards, H. and Haime, J. 1850. A Monograph of the British Fossil Corals: Introduction. Palaeontographical Society, 3:ilxxxv.Google Scholar
Okulitch, V. J. 1936a. Some Chazyan corals. Royal Society of Canada Transactions, Ser. 3, Sec. 4, 30:5973.Google Scholar
Okulitch, V. J. 1936b. On the genera Heliolites, Tetradium, and Chaetetes. American Journal of Science, Ser. 5, 32:361379.Google Scholar
Oliver, W. A. Jr., and Coates, A. G. 1987. Phylum Cnidaria, p. 140193. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto.Google Scholar
Pandolfi, J. M. 1989. Phylogenetic analysis of the early tabulate corals. Palaeontology, 32:745764.Google Scholar
Patzkowsky, M. E. and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios, 14:301323.CrossRefGoogle Scholar
Plusquellec, Y. 1989. Increase in Turnacipora (Tabulata), from the Tournaisian of Transcaucasia, p. 99107. In Jell, P. A. and Pickett, J. W. (eds.), Fossil Cnidaria 5. Association of Australasian Palaeontologists Memoir 8.Google Scholar
Sardeson, F. W. 1899. Lichenaria typa W. & S. American Journal of Science, Ser. 4, 8:101104.Google Scholar
Schouppé, A. von and Oekentorp, K. 1974. Morphogenese und Bau der Tabulata unter besonderer Berücksichtigung der Favositida. Palaeontographica Abteilung A, 145(4-6):79194.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians, p. 161207. In House, M. R. (ed.), Systematics Association Special Volume 12: The Origin of Major Invertebrate Groups. Academic Press, London.Google Scholar
Scrutton, C. T. 1984. Origin and early evolution of tabulate corals, p. 110118. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Scrutton, C. T. 1988. Patterns of extinction and survival in Palaeozoic corals, p. 6588. In Larwood, G. P. (ed.), Extinction and Survival in the Fossil Record. Systematics Association Special Volume 34.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: Origins and relationships. Yorkshire Geological Society Proceedings, 51:177208.Google Scholar
Scrutton, C. T. 1998. The Palaeozoic corals, II: Structure, variation and palaeoecology. Yorkshire Geological Society Proceedings, 52:157.CrossRefGoogle Scholar
Sinclair, G. W. 1955. Some Ordovician halysitoid corals. Royal Society of Canada Transactions, Ser. 3, 49:95103.Google Scholar
Sokolov, B. S. 1950. Sistematika i istoriya razvitiya paleozoyskikh korallov Anthozoa Tabulata. Voprosy Paleontologii, 1:134210.Google Scholar
Sokolov, B. S. 1955. Tabulyaty paleozoya evropeyskoy chasti SSSR. Vvedemoe: Obshchie voprosy sistematiki i istorii razvitiya tabulyat. Vsesoiuznyi Neftyanoy Nauchno-Issledovatelskii Geologo-Razvedochny Institut (VNIGRI), Trudy, N.S., 85, 527 p.Google Scholar
Sokolov, B. S. 1962. Podklass Tabulata, p. 192265. In Sokolov, B. S. (ed.), Volume 2, Gubki, arkheotsiaty, kishechnopolostnye, chervi. In Orlov, Yu. A. (ed.), Osnovy Paleontologii. Akademii Nauk SSSR, Moscow.Google Scholar
Stel, J. H. 1978. Growth and reproduction in the tabulate Favosites forbesi from the Silurian of Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 100:181188.Google Scholar
Stel, J. H. 1979. Lateral increase in Paleofavosites asper (d'Orbigny, 1850) and other tabulates. Journal of Paleontology, 53:501505.Google Scholar
Twenhofel, W. H. 1914. The Anticosti Island faunas. Geological Survey of Canada Museum Bulletin, 3, Geological Series, 19, 38 p.Google Scholar
Webby, B. D., Cooper, R. A., Bergström, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Webby, B. D., Elias, R. J., Young, G. A., Neuman, B. E. E., and Kaljo, D. 2004. Corals, p. 124146. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Wedekind, R. 1937. Einführung in die Grundlagen der historischen Geologie, II; Band; Mikrobiostratigraphie, Die Korallen- und Foraminiferenzeit. Ferdinand Enke, Stuttgart, 136 p.Google Scholar
Wilson, C. W. Jr. 1976. Geologic map of the New Middleton Quadrangle, Tennessee. Tennessee Division of Geology, GM 318-NE.Google Scholar
Winchell, N. H. and Schuchert, C. 1895. Sponges, graptolites and corals from the Lower Silurian of Minnesota, p. 5595. In Lesquereux, L., Woodward, A., Thomas, B. W., Schuchert, C., Ulrich, E. O., and Winchell, N. H., The Geology of Minnesota; Vol. III. Pt. I of the Final Report; Paleontology. Minnesota Geological and Natural History Survey, Minneapolis.Google Scholar
Shaochun, Xu, Elias, R. J., and Lee, D.-J. 1999. The systematic position of Agetolites: Tabulata or Rugosa?, p. 33. In Abstracts, 8th International Symposium on Fossil Cnidaria and Porifera, Sendai, Japan.Google Scholar
Young, G. A. and Elias, R. J. 1995. Latest Ordovician to earliest Silurian colonial corals of the east-central United States. Bulletins of American Paleontology, 108(347): 1148.Google Scholar