Skip to main content Accessibility help
×
Home

Confocal laser scanning microscopy and Raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan

  • J. William Schopf (a1) (a2), Anatoliy B. Kudryavtsev (a2) and Vladimir N. Sergeev (a3)

Abstract

Precambrian microbiotas, such as that permineralized in bedded and stromatolitic cherts of the late Neoproterozoic, 750- to 800-Ma-old, Chichkan Formation of South Kazakhstan, have traditionally been studied by optical microscopy only. Such studies, however, are incapable of documenting accurately either the three-dimensional morphology of such fossils or their chemical composition and that of their embedding minerals. As shown here by analyses of fossils of the Chichkan Lagerstätte, the solution to these long-standing problems is provided by two techniques recently introduced to paleontology: confocal laser scanning microscopy (CLSM) and Raman imagery. The two techniques are used together to characterize, in situ and at micron-scale resolution, the cellular and organismal morphology of the thin section-embedded organic-walled Chichkan fossils. In addition, Raman imagery is used to analyze the molecular-structural composition of the carbonaceous fossils and of their embedding mineral matrix, identify the composition of intracellular inclusions, and quantitatively assess the geochemical maturity of the Chichkan organic matter.

CLSM and Raman imagery are both broadly applicable to the study of fossils, whether megascopic or microscopic and regardless of mode of preservation, and both are non-intrusive and non-destructive, factors that permit their use for analyses of archived specimens. They are especially useful for the study of microscopic fossils, as is demonstrated in this first in-depth study of diverse taxa of a single Precambrian microbiota for which they provide information in three dimensions at high spatial resolution about their organismal morphology, cellular anatomy, kerogenous composition, mode of preservation, and taphonomy and fidelity of preservation.

Copyright

References

Hide All
Amos, W. B. and White, J. G. 2003. How the confocal laser scanning microscope entered biological research. Biology of Cells, 95: 335342.
Arouri, K.R., Greenwood, P. F., and Walter, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterization. Organic Geochemistry, 31: 7589.
Barghoorn, E. S. and Schopf, J. W. 1965. Microorganisms from the late Precambrian of central Australia. Science, 150: 337339.
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science, 147: 563577.
Birkmann, H. and Lundin, R. H. 1996. Confocal microscopy: Potential applications in micropaleontology. Journal of Paleontology, 70: 10841087.
Chen, J-Y., Schopf, J. W., Bottjer, D. J., Zhang, C-Y., Kudryavtsev, A. B., Tripathi, A. B., Wang, X-Q., Yang, Y-H., Gao, X., and Yang, Y. 2007. Raman spectra of a ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Science USA, 104: 62896292.
Cloud, P. E. Jr. 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148: 2745.
Drews, G. 1973. Fine structure and chemical composition of the cell envelopes, p. 99116. In Carr, N. G., and Whitton, B. A. (eds.), The Biology of Blue-Green Algae, Botanical Monographs, Vol. 9. University of California Press, Berkeley, CA.
Feist-Burkhardt, S. and Monteil, E. 2001. Gonyaulacacean dinoflagellate cysts with multi-plate precingular archaeopyle. Neues Jarbuch für Geologie und Palaeontolgie Abhandlungen, 219: 3381.
Feist-Burkhardt, S. and Pröss, J. 1999. Morphological analysis and description of middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy. Bulletin of the Centre for Recherche of the Elf Explorer [1998], 22: 103145.
Foster, B., Williams, V. E., Witmer, R. J., and Piel, K. M. 1990. Confocal microscopy: a new technique for imaging micro-organisms and morphology in three-dimensions. Palynology, 14: 212 (abstract).
Gaft, M., Reisfeld, R., and Panczerer, G. 2005. Modern Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin.
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 439 p.
Hochuli, P. and Feist-Burkhardt, S. 2004. An early boreal cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology, 23: 97104.
Hofmann, H. J., and Schopf, J. W. 1983. Early Proterozoic microfossils. In Schopf, J. W. (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., and Stetter, K. O. 2000. Carbon isotopic composition of individual Precambrian microfossils. Geology, 28: 707710.
Hunt, J. M. 1996. Petroleum Geochemistry and Geology, Second Edition. W. H. Freeman, New York.
Igisu, M., Ueno, Y., Shimojima, M., Nakashima, S., Awramik, S. M., Ohta, H., and Maruyama, S. 2009. Micro-FTIR spectroscopic signatures of Bacterial lipids in Proterozoic microfossils. Precambrian Research, 173: 1926.
Jehlicka, J. and Beny, C. 1992. Application of Raman microspectrometry in the study of structural changes in Precambrian kerogens during regional metamorphism. Organic Geochemistry, 18: 211213.
Jehlička, J., Urban, A., and Pokorny, J. 2003. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Acta, A59: 23412352.
Kelemen, S. R. and Fung, H. L. 2001. Maturity trends in Raman spectra from kerogen and coal. Energy and Fuels, 15: 653658.
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10: 115151.
Knoll, A. H., Barghoorn, E. S., and Golubic, S. 1975. Paleopleurocapsa wopfneri gen. et sp. nov.: A late Precambrian alga and its modern counterpart. Proceedings of the National Academy of Sciences USA, 72: 24882492.
Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G., and Wdowiak, T. J. 2001. In situ laser-Raman imagery of Precambrian microscopic fossils. Proceedings of the National Academy of Sciences USA, 98: 823826.
McKeegan, K. D., Kudryavtsev, A. B., and Schopf, J. W. 2007. Raman and ion microscopic imagery of graphite inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology, 35: 591594.
McMillan, P. F. and Hofmeister, A. M. 1988. Infrared and Raman spectroscopy. Reviews of Mineralogy, 18: 99159.
Mendelson, C. V. and Schopf, J. W. 1992. Proterozoic and selected Early Cambrian microfossils and microfossil-like objects, p. 865951. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, NY.
Mus, M. M. and Moczydlowska, M. 2000. Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from Visingsö Group, Sweden. Norsk Geologisk Tidsskrift, 80: 213228.
Nagy, L. A. 1974. Transvaal stromatolite: first evidence for the diversification of cells about 2.2×109 years ago. Science, 183: 514516.
Nagy, L. A. 1978. New filamentous and cystous microfossils, 2,300 M.Y. old, from the Transvaal sequence. Journal of Paleontology, 52: 141154.
NIX, T. and Feist-Burkhardt, S. 2003. New methods applied to the microstructure analysis of Messel Oil shale: Confocal Laser Scanning Microscopy (CLSM) and Environmental Scanning Electron Microscopy (ESEM). Geological Magazine, 140: 469478.
O'Conner, B. 1996. Confocal laser scanning microscopy: A new technique for investigating and illustrating fossil Radiolaria. Micropaleontology, 42: 395402.
Pankratz, H. S. and Bowen, C. C. 1963. Cytology of blue-green algae. I. The cells of Symploca muscorum. American Journal of Botany 50: 387399.
Pasteris, J. D. and Wopenka, B. 1991. Raman spectra of graphite as indicators of degree of metamorphism. Canadian Mineralogist, 29: 19.
Pasteris, J. D. and Wopenka, B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3: 727738.
Peters, K. E., Ishiwatari, K., and Kaplan, I. R. 1977. Color of kerogen as index of organic maturity. Bulletin of the American Association of Petroleum Geologists, 64: 504510.
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42: 651688.
Schopf, J. W. 1992. Paleobiology of the Archean, p. 2539. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.
Schopf, J. W. 1993. Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science 260: 640646.
Schopf, J. W. 1999. Cradle of Life, The Discovery of Earth's Earliest Fossils. Princeton University Press, Princeton, NJ, 367 p.
Schopf, J. W. 2006a. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society of London B 361: 869885
SCHOPF, J. W. 2006b. The first billion years: When did life emerge? Elements 2: 299–233.
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45: 925961.
Schopf, J. W. and Bother, D. J. 2009. World summit on ancient microscopic fossils. Precambrian Research, 173: 13.
Schopf, J. W. and Kudryavtsev, A. B. 2005. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology, 3: 112.
Schopf, J. W. and Kudryavtsev, A. B. 2009. Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Research, 173: 3949.
Schopf, J. W. and Walter, M. R. 1983. Archean microfossils: New evidence of ancient microbes, p. 214239. In Schopf, J. W. (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D. 2002. Laser-Raman imagery of Earth's earliest fossils. Nature, 416: 7376.
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., and Wdowiak, T. J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5: 333371.
Schopf, J. W., Tripathi, A. B., and Kudryavtsev, A. B. 2006. Three-dimensional optical confocal imagery of Precambrian microscopic organisms. Astrobiology, 1: 116.
Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., and Tripathi, A. B. 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141155.
Schopf, J. W., Tewari, V. C., and Kudryatsev, A. B. 2008. Discovery of a new chert-permineralized microbiota of the Proterozoic Buxa Formation of the Ranjit Window, Sikkim, N.E. India, and its astrobiological implications. Astrobiology, 8: 735746.
Schopf, J. W., Kudryavtsev, A. B., Tripathi, A. B., and Czaja, A. D. in press. Three-dimensional morphological (CLSM)and chemical (Raman) imagery of permineralized fossils. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time. Springer-Verlag, Heildelberg, Berlin.
Scott, A. C. and Hemsley, A. R. 1990. A comparison of new microscopical techniques for the study of fossil spore wall ultrastructure. Revrews of Palaeobotany and Palynology, 67: 133139.
Sergeev, V. N. and Schopf, J. W. 2010. Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation. Journal of Paleontology, 84: 363401.
Spötl, C., Houseknecht, D. W., and Jaques, R. C. 1998. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman study. Organic Geochemistry, 28: 535542.
Talyzina, N. M. 1997. Fluorescence intensity in early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology, 100: 99108.
Taylor, P. D., Schopf, J. W., and Kudryavtsev, A. B. 2008. Calcite and aragonite in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invertebrate Biology, 127: 8797.
Vidal, G., 1981. Micropalaeontology and Biostratigraphy of the Upper Proterozoic and Lower Cambrian Sequence in East Finnmark, Northern Norway. Norges Geol. Undersøkelse, 362: 153.
Williams, K. P. J., Nelson, J., and Dyer, S. 1997. The Renishaw Raman Database of Gemological and Mineralogical Materials. Renishaw Tranducers Systems Division, Gloucestershire, England, 107 + A1-Z5 p.
Wopenka, B. and Pasteris, J. D. 1993. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78: 533557.
Yui, T-F., Huang, E., and Xu, J. 1996. Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks. Journal of Metamorphic Geology, 14: 115124.

Related content

Powered by UNSILO

Confocal laser scanning microscopy and Raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan

  • J. William Schopf (a1) (a2), Anatoliy B. Kudryavtsev (a2) and Vladimir N. Sergeev (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.