Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-04T19:08:05.337Z Has data issue: false hasContentIssue false

Barremian bivalves from the Huitrín Formation, west-central Argentina: taxonomy and paleoecology of a restricted marine association

Published online by Cambridge University Press:  14 July 2015

Dario G. Lazo
Affiliation:
1Instituto de Estudios Andinos Don Pablo Groeber, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Pabellón 2, Ciudad Universitaria, Buenos Aires 1428, Argentina,
Susana E. Damborenea
Affiliation:
2Departamento de Paleontología de Invertebrados, Museo de Ciencias Naturales de La Plata, Paseo del Bosque s/n, La Plata 1900, Argentina,

Abstract

The Cretaceous Huitrín Formation in west-central Argentina records the final connection of the Neuquén Basin to the Pacific Ocean. This formation is comprised of a variety of continental to marginal-marine sediments deposited behind an Andean volcanic arc under warm, arid paleoclimatic conditions. Here we focus on a bivalve fauna from carbonate ramp deposits within the Barremian La Tosca Member of the Huitrín Formation. This fauna is very abundant and widely distributed within the basin but, surprisingly, it has not yet been studied in detail. In addition, paleoenvironmental affinities remain unresolved, with the fauna variously interpreted as having freshwater, brackish, and marine affinities. We studied the fauna's taxonomy and paleoecology based on more than 500 specimens collected at ten fossil localities in combination with new field observations. The bivalve assemblage was recorded from middle to outer carbonate ramp deposits and is composed of five taxa of marine affinity: Phelopteria huitriniana n. sp., Isognomon cf. I. nanus (Behrendsen), Placunopsis? pichi n. sp., Anthonya jarai n. sp., and Argenticyprina mulensis n. gen. n. sp.; the first three may be regarded as eurytopic and/or opportunistic. Reduced diversity, low evenness, overall small size (length <4 cm), thin shells, eurytopic or opportunistic life strategies, and high endemism point to a restricted marine setting for the La Tosca Member. The most important limiting factors likely were low primary productivity and fluctuating salinity and temperature, as conditions inferred for the unit include high evaporation rates combined with low continental runoff and reduced rainfall. Thick evaporite deposits below and above La Tosca Member and thin intercalated gypsum beds support a restricted, hypersaline setting.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbass, H. L. 1962. A monograph of the Egyptian Cretaceous pelecypods. Monographs of the Geological Museum, Cairo, Palaeontology, 1.Google Scholar
Adams, H. and Adams, A. 1853-1858. The genera of recent Mollusca: (a) v. 1 (1853, 1854), 484 p.; (b) v. 2 (1854-1858), 661 p.; (c) v. 3 (1858); 136 pls.Google Scholar
Adkins, W. S. 1928. Handbook of Texas Cretaceous fossils. University of Texas Bulletin, Number 2838, 358 p.Google Scholar
Aguirre Urreta, M. B., Casadio, S., Cichowolski, M., Lazo, D. G., and Rodriguez, D. L. 2008. Afinidades paleobiogeográficas de los invertebrados cretácicos de la Cuenca Neuquina. Ameghiniana, 45:593613.Google Scholar
Aguirre Urreta, M. B., Mourgues, A. F., Rawson, P. F., Bulot, L. G., and Jaillard, E. 2007. The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal, 42:143173.CrossRefGoogle Scholar
Amano, M. 1956. Some Upper Cretaceous fossils from southwestern Japan (Part 1). Kumamoto Journal of Sciences B1, 2:6393.Google Scholar
Anderson, F. M. 1958. Upper Cretaceous of the Pacific Coast. Geological Society of America Memoir, 71.Google Scholar
Ballent, S., Lazo, D. G., Pazos, P. J., and Concheyro, A. G. 2006. Avances en la paleontología del Miembro La Tosca de la Formación Huitrín (Cretácico Inferior), Cuenca Neuquina, Argentina. Abstracts 9th Congreso Argentino de Paleontología y Bioestratigrafía, Córdoba, 213 p.Google Scholar
Barber, W. 1958. Upper Cretaceous Mollusca from North-Eastern Nigeria. Records Geological Survey Nigeria, 1956, 2:1437, pls. 5–9.Google Scholar
Behrendsen, O. 1892. Zur Geologie des Ostabhanges der argentinischen Cordillere. II. Theil. Zeitschrift der Deutschen Geologischen Gesellschaft, 44:142, 4 pls.Google Scholar
Bengtson, P. 1988. Open nomenclature. Palaeontology, 31:223227.Google Scholar
Bittner, A. 1895. Lamellibranchiaten der Alpine Trias, I Theil: Revision der Lamellibranchiaten von St. Cassian. Abhandlungen der kaiserlichköniglichen Geologischen Reichsanstalt, 18:1236.Google Scholar
Blasco de Nullo, G. and Levy de Caminos, R. 1975. Informe de la megafauna coleccionada en la Formación Agrio y base de la Formación Huitrín (Neuquén). Unpublished Report, Servicio Geológico y Minero Argentino, Buenos Aires, 6 p.Google Scholar
Böse, E. 1910. Monografía geológica y paleontológica del cerro de Muleros cerca de Ciudad Juárez, Estado de Chihuahua y descripción de la fauna cretácea de la Encantada, Placer de Guadalupe, Estado de Chihuahua. Instituto Geológico de México Boletín, 25:1193, 48 pls.Google Scholar
Boyd, D. W. and Newell, N. D. 2002. A unique Pterioid Bivalve from the Early Triassic of Utah. American Museum Novitates, Number 3375, 9 p.Google Scholar
Brodtkorb, M. K. de, Ramos, V. A., and Ametrano, S. 1975. Los yacimientos estratoligados de celestina-baritina de la Formación Huitrín y su origen evaporítico. Provincia del Neuquén, Argentina. Abstracts 2nd Congreso Iberoamericano de Geología Económica, Buenos Aires, 2:143168.Google Scholar
Brongniart, A. 1821. Sur les caractères zoologiques des formations, avec l'application des ces caractères à la détermination de quelques terrains de Craie. Annales des mines, 6:537572.Google Scholar
Buvignier, A. 1852. Statistique géologique, minéralogique, métallurgique et paléontologique du departement de la Meuse, Paris, 52 p., 32 pls. Google Scholar
Cabaleri, N. and Armella, C. 1993. Microfacies y modelo deposicional del Miembro La Tosca (Albiano), Formación Huitrín, en el área de Pampa de la Cueva y Cerro Campana, Zapala, provincia del Neuquén, Argentina. Abstracts 12th Congreso Geológico Argentino, Buenos Aires, 1:241248.Google Scholar
Casey, R. 1952. Some genera and subgenera, mainly new, of Mesozoic heterodont Lamellibranchia. Proceedings of the Malacological Society, 29:121176, pls. 7–9.Google Scholar
Casey, R. 1961. The stratigraphical palaeontology of the Lower Greensand. Palaeontology, 3:487621.Google Scholar
Cazau, L. B., Penna, M. R., and Boll, A. 2002. Los reservorios del Miembro La Tosca de la Formación Huitrín, p. 493509. In Schiuma, M., Hinterwimmer, G. and Vergani, G. (eds.), Simposio “Rocas Reservorio de las Cuencas Productivas de la Argentina,” 5th Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata.Google Scholar
Chiplonker, G. W. 1939. Lamellibranchs from the Bagh Beds. Proceedings of the Indian Academy of Sciences, 10, Section B, p. 255274, 2 pls. Google Scholar
Coan, E. V., Scott, P.V., and Bernard, F. R. 2000. Bivalve seashells of western North America. Santa Barbara Museum of Natural History, Santa Barbara, 764 p.Google Scholar
Coquand, M. H. 1862. Géologie et Paléontologie de la région sud de la province de Constantine, 320 p., 31 pls. Google Scholar
Cox, L. R. 1952. Cretaceous and Eocene fossils from the Gold Coast. Gold Coast Geological Survey Bulletin, 17:168.Google Scholar
Cox, L. R. 1954. Taxonomic notes on Isognomonidae and Bakevelliidae. Proceedings of the Malacological Society of London, 31:4649.Google Scholar
Cox, L. R. 1964. Notes concerning the taxonomy and nomenclature of fossil Bivalvia (mainly Mesozoic). Proceedings of the Malacological Society London, 36:3948, 1 pl.Google Scholar
Cox, L. R., Newell, N. D., Boyd, D. W., Branson, C. C., Casey, R., Chavan, A., Coogan, A. H., Dechaseaux, C., Fleming, C. A., Haas, F.F., Hertlein, L. G., Kauffman, E. G., Keen, A. M., Larocque, A., Mcalester, A. L., Moore, R. C., Nuttall, C. P., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Trueman, E. R., Turner, R. D., and Weir, J. 1969. Treatise on Invertebrate Paleontology. Part N. Bivalvia. Geological Society of America and University of Kansas Press, Lawrence, 952 p.Google Scholar
Crame, J. A., Francis, J. E., Cantrill, D. J., and Pirrie, D. 2004. Maastrichtian stratigraphy of Antarctica. Cretaceous Research, 25:411423.CrossRefGoogle Scholar
Crampton, J. S. 1988. Comparative taxonomy of the bivalve families Isognomonidae, Inoceramidae, and Retroceramidae. Palaeontology, 31:965996.Google Scholar
Cvancara, A. M. 1966. Revision of the fauna of the Cannonball Formation (Paleocene) of North and South Dakota. The University of Michigan, Contributions of the Museum of Paleontology, 20:277374.Google Scholar
Damborenea, S. E. 1987. Early Jurassic Bivalvia of Argentina. Part 2: Superfamilies Pteriacea, Buchiacea and part of Pectinacea. Palaeontographica A, 199:113216, 14 pls.Google Scholar
Damborenea, S. E., Manceñido, M. O., and Riccardi, A. C. 1979. Estudio paleontológico de la Formación Chachao. Unpublished Report, Yacimientos Petrolíferos Fiscales, 152 p., 17 pls.Google Scholar
Dartevelle, E. and Freneix, S. 1957. Mollusques fossiles du Crétacé de la côte occidentale d'Afrique du Cameroun à l'Angola. III. Lamellibranches. Annales du Musée Royal du Congo Belge, Sciences Géologiques, 20:271 p., 35 pls. Google Scholar
Dhondt, A.V. and Dieni, I. 1988. Early Cretaceous bivalves of eastern Sardinia. Memorie di Scienze Geologiche, Memorie degli Instituti di Geologia e Mineralogia dell'Università di Padova, 40:197, 13 pls.Google Scholar
Doello-Jurado, M. 1927. Noticia preliminar sobre los moluscos fósiles de agua dulce. Boletín de la Academia Nacional de Ciencias, Córdoba, 30:409416.Google Scholar
El Qot, G. M. E. S. 2006. Late Cretaceous macrofossils from Sinai, Egypt. Beringeria, 36:3163.Google Scholar
Evans, J. and Shumard, B. F. 1854. Descriptions of new fossil species from the Cretaceous Formation of Sage Creek, Nebraska, collected by the North Pacific Railroad Expedition, under Gov. J.J. Stevens. Proceedings of the Academy of Natural Sciences of Philadelphia, 7:163164.Google Scholar
Faure, H. 1966. Reconnaissance géologique des formations sédimentaires post-paléozoïques du Niger oriental. Mémoires Bureau de Recherches Géologique et Minières, 47:630 p., 12 pls. Google Scholar
Férussac, A. E. de. 1822. Tableaux systematiques des animaux mollusques. Paris and London, 111 p.Google Scholar
Fischer, P. H. 1880-1887. Manuel de conchyliologie et de paléontologie conchyliologique. F. Savy, Paris, xxv + 1369 p., 23 pls. Google Scholar
Freneix, S. 1972. Les mollusques bivalves crétacés du Basin côtier de Tarfaya (Maroc méridional). Notes et Mémoires du Service Géologique du Maroc, 228:49254, 18 pls.Google Scholar
Freneix, S., Breton, G., and Dubus, B. 1986. Le Kimmeridgien de Merrey-sur-Arce (Aube) et sa faune oligospecifique a Placunopsis radiata arcensis nov. subsp.: revision du genre Placunopsis (Placunopsidae, nov. fam., Bivalvia). Bulletin Trimestriel Societé Géologique Normandie et Amis Museum du Havre, 72:2135.Google Scholar
Fürsich, F. T. 1980. Preserved life positions of some Jurassic bivalves. Palaeontologische Zeitschrift, 54:289300.Google Scholar
Fürsich, F. T. 1981. Invertebrate trace fossils from the Upper Jurassic of Portugal. Comunicaçoes dos Serviços Geologicos de Portugal, 67:153168.Google Scholar
Fürsich, F. T. and Palmer, T. J. 1982. The first true anomiid bivalve? Palaeontology, 25:897903.Google Scholar
Fürsich, F. T. and Werner, W. 1986. Benthic associations and their environmental significance in the Lusitanian Basin (Upper Jurassic, Portugal. Neues Jahrbuch für Geologie und Paläontologie, Abhandlung, 172:271329.Google Scholar
Fürsich, F. T. and Werner, W. 1989. Taxonomy and ecology of Juranomia calcibyssata gen. et sp. nov.—A widespread anomiid bivalve from the Upper Jurassic of Portugal. Geobios, 22:325337, 1 pl.Google Scholar
Fürsich, F. T., Freytag, S., Röhl, J., and Schmid, A. 1995. Palaeoecology of benthic associations in salinity-controlled marginal marine environments: Examples from the Lower Bathonian (Jurassic) of the Causses (southern France). Palaeogeography, Palaeoclimatology, Palaeoecology, 113:135172.Google Scholar
Gabb, W. M. 1864. Description of Cretaceous fossils, in Paleontology of California. California Geological Survey, Paleontology, 1:57243, 32 pls.Google Scholar
Gardner, R. N. 2005. Middle-Late Jurassic bivalves of the superfamily Veneroidea from New Zealand and New Caledonia. New Zealand Journal of Geology and Geophysics, 48:325376.Google Scholar
Gillet, S. 1921. Etude du Barrémien Supérieur de Wassy (Haute-Marne). Bulletin de la Societé Géologique de France, Notes et Mémoires, Ser. 4, 21:347, 3 pls.Google Scholar
Gillet, S. 1924, 1925. Études sur les Lamellibranches néocomiens. Mémoirs de la Societé Géologique de France (N.S.), 1 and 2, 339 p., 95 figs., 2 pls. Google Scholar
Gray, J. E. 1847. A list of genera of recent Mollusca, their synonyms and types. Proceedings Zoological Society London, 15:129219.Google Scholar
Groeber, P. 1946. Observaciones geológicas a lo largo del meridiano 70. I. Hoja Chos Malal. Revista de la Sociedad Geológica Argentina, 1:177208.Google Scholar
Groeber, P. 1953. Andico. Mesozoico. Geografía de la República Argentina. Sociedad Argentina de Estudios Geográficos (GAEA), 2:349541.Google Scholar
Hatai, K., Kotaka, T., and Noda, H. 1969. Some marine mollusca from Shimanokoshi Harbor in Tanohata-cho, Shimohei-gun, Iwate Prefecture, Northeast Honshu, Japan. Saito Ho-on Kai Museum, Research Bulletin, 38:2936, 1 pl.Google Scholar
Haupt, O. 1907. Beiträge zur Fauna des oberen Malm und der unteren Kreide in der argentinischen Kordillere. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie B.B., 23:187236, pls. 7-10.Google Scholar
Hayami, I. 1965. Lower Cretaceous marine pelecypods of Japan, part II. Memoirs of the Faculty of Sciences, Kyushu University, Series D, Geology, 17:73150, pls. 7-21.Google Scholar
Hayami, I. 1975. A systematic survey of the Mesozoic Bivalvia from Japan. Bulletin of the University Museum, University of Tokyo, 10:1249, pls. 1-10.Google Scholar
Hayami, I. and Kase, T. 1981. Cenomanian mollusks in a sandstone block from the sea bottom off the southern coast of Kuji, northeast Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N.S., 121:2950, pls. 4, 5.Google Scholar
Hickman, C. S. 2003. Mollusc-Microbe Mutualisms Extend the Potential for life in Hypersaline Systems. Astrobiology, 3:631644.Google Scholar
Hölder, H. 1990. Über die Muschelgattung Placunopsis (Pectinacea, Placunopsidae) in Trias und Jura. Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie), 165:163.Google Scholar
Holzapfel, E. 1889. Die Mollusken der Aachener Kreide (Fortsetzung und Schluss). Palaeontographica A, 35:139268, pls. 8-29.Google Scholar
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D. 2005. The Neuquén Basin: an overview, p. 114. In Veiga, G. D., Spalletti, L. A., Howell, J. A. and Schwarz, E. (eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London Special Publications, 252.Google Scholar
Hudson, J. D. 1963. The ecology and stratigraphical distribution of the invertebrate fauna of the Great Estuarine series. Palaeontology, 6:327348.Google Scholar
Imlay, R. W. 1961. Characteristic Lower Cretaceous Megafossils from Northern Alaska. U.S. Geological Survey Professional Paper, 335:174, 20 pls.Google Scholar
Jaglarz, P. and Uchman, A. 2010. A hypersaline ichnoassemblage from the Middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, Southern Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:7181.CrossRefGoogle Scholar
Jones, T. S. 1938. Geology of the Sierra de la Peña and paleontology of the Indidura Formation, Coahuila, Mexico. Geological Society of America Bulletin, 49:69150.CrossRefGoogle Scholar
Kauffman, E. G. 1977. Illustrated guide to biostratigraphically important Cretaceous macrofossils, Western Interior Basin, U.S.A. The Mountain Geologist, 14:225274.Google Scholar
Kauffman, E. G. 1980. Cretaceous and Pleistocene Bivalvia, Deep Sea Drilling Project Holes 415, 415A. Deep Sea Drilling Project Initial Reports, 50:545549.Google Scholar
Kauffman, E. G. and Sageman, B. B. 1990. Onshore-offshore biofacies patterns, Greenhorn eustatic cycle, Western Interior Cretaceous epicontinental seaway, North America. American Association of Petroleum Geologists Bulletin, 74:692.Google Scholar
Kauffman, E. G. and Powell, J. D. 1977. Paleontology, p. 47114. In Kauffman, E. G., Hattin, D. E. and Powell, J. D. (eds), Stratigraphic, Paleontological, and Paleoenvironmental Analysis of the Upper Cretaceous Rocks of Cimarron County, Northwestern Oklahoma. Geological Society of America Memoir, 149.Google Scholar
Kauffman, E.G., Sageman, B. B., Kirkland, J. I., Elder, W. P., Harries, P. J., and Villamil, T. 1993. Molluscan Biostratigraphy of the Cretaceous Western Interior Basin, North America. Geological Association of Canada Special Paper, 39:397434.Google Scholar
Kelly, S. R. A. 1984. Bivalvia of the Spilsby Sandstone and Sandringham Sands (Late Jurassic-Early Cretaceous) of eastern England. Part I. Monograph of the Palaeontographical Society of London, 137:194, i-xii, pls. 1-20.Google Scholar
Kidwell, S. M. 1998. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios, 30:977995.Google Scholar
Kitchin, F. L. 1908. The Invertebrate Fauna and Palaeontological Relations of the Uitenhage Series. Annals of the South African Museum, 7:21250, pls. 2-11.Google Scholar
Krenkel, E. 1910. Die untere Kreide von Deutsch-Ostafrika. Beitrage Paläont. Geol. Österreich-Ungarns u. Otrients, 23:201250, 18 figs., 4 pls.Google Scholar
Lamarck, J. B. 1799. Prodrome d'une nouvelle classification des coquilles. Memoires de la Société d'Histoire Naturelle de Paris, 1:6391.Google Scholar
Laube, G. C. 1867. Die Bivalven des Braunen Jura von Balin. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 27:1162, pls. 1-5.Google Scholar
Lazo, D. G. 2004. Análisis de concentraciones fósiles del Cretácico Inferior de Cuenca Neuquina. Unpublished , Universidad de Buenos Aires, 337 p.Google Scholar
Lazo, D. G. 2007. Early Cretaceous bivalves of the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecology. Geological Journal, 42:127142.Google Scholar
Lazo, D. G., Cichowolski, M., Rodriguez, D. L., and Aguirre-Urreta, M. B. 2005. Lithofacies, palaeoecology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina, p. 295315. In Veiga, G. D., Spalletti, L. A., Howell, J. A. and Schwarz, E. (eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London Special Publications, 252.Google Scholar
Leanza, H. A. 2003. Las sedimentitas huitrinianas y rayosianas (Cretácico inferior) en el ámbito central y meridional de la cuenca Neuquina, Argentina. Servicio Geológico y Minero Argentino, Serie Contribuciones Técnicas, Geología, 2:131.Google Scholar
Legarreta, L. 1985. Análisis estratigráfico de la Formación Huitrín (Cretácico Inferior). Provincia de Mendoza. Unpublished , Universidad Buenos Aires, 197 p., 50 pls. Google Scholar
Legarreta, L. 1986. Litogénesis de las secuencias depositacionales carbonáticas de la Formación Huitrín (Cretácico Inferior). Provincia de Mendoza. Abstracts 1st Reunión Argentina de Sedimentología, La Plata, 1:173176.Google Scholar
Legarreta, L. and Gulisano, C. 1989. Análisis estratigráfico de la Cuenca Neuquina (Triásico superior-Terciario inferior), Argentina. Universidad Nacional de Tucumán, Serie Correlación Geológica, 6:221244.Google Scholar
Legarreta, L. and Uliana, M. A. 1991. Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. International Association of Sedimentologists Special Publication, 12:429450.Google Scholar
Leymerie, M. A. 1842. Suite du mémoire sur le terrain Crétacé du département de l'Aube. Second partie (partie paléontologique). Mémoires de la Société Géologique de France, 5:134, 18 pls.Google Scholar
Lightfoot, J. 1786. A catalogue of the Portland Museum, lately the property of the Duchess of Portland, deceased; which will be sold at auction, by Mr. Skinner and Co. on Monday the 24th of April, 1786. Skinner, London, 194 p.Google Scholar
Linné, C. Von. 1758 Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata, p. [14], 1–824. Holmiae. (Salvius).Google Scholar
Linné, C. Von. 1767. Systema naturae per regna tria naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis.- Salvius, Stockholm, vol. 1, n° 2, Editio duodecima reformata, p. 5331327.Google Scholar
Maas, G. 1895. Die untere Kreide des subhercynen Quadersandstein-Gebirger. Zeitschrift der Deutschen Geologischen Gesselschaft, 47:227302, pls. 5–9.Google Scholar
Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica, 49:85110.Google Scholar
Manceñido, M. O. and Damborenea, S. E. 1984. Megafauna de Invertebrados Paleozoicos y Mesozoicos, p. 413465. In Ramos, V. A. (ed.), Geología y Recursos Naturales de la Provincia de Río Negro, Relatorio 9th Congreso Geológico Argentino, Bariloche.Google Scholar
Marchese, H. G. 1971. Litoestratigrafía y variaciones faciales de las sedimentitas mesozoicas de la cuenca Neuquina, prov. de Neuquén, Rep. Argentina. Revista de la Asociación Geológica Argentina, 26:343410.Google Scholar
Marincovich, L. 1993. Danian Mollusks from the Prince Creek Formation, Northern Alaska, and Implications for Arctic Ocean Paleogeography. The Paleontological Society Memoir, 35.Google Scholar
Matsumoto, T. 1938. Preliminary notes on some of the more important fossils among the Goshonoura Fauna. Contribution to the Cretaceous Paleontology of Japan III. Journal of the Geological Society of Japan, 45:1326.Google Scholar
Matthews, S. C. 1973. Notes on open nomenclature and on synonymy lists. Palaeontology, 16:713719.Google Scholar
Meek, F. B. 1873. Preliminary paleontological report, consisting of lists and descriptions of fossils, with remarks on the ages of the rocks in which they were found, etc. U.S. Geological Survey of the Territories, 6th Annual Report for 1872, p. 429518.Google Scholar
Meek, F. B. 1876. A report on the Invertebrate Cretaceous and Tertiary Fossils of the Upper Missouri Country. U.S. Geological Survey of the Territories, Reports 9, 629 p., 44 pls. Google Scholar
Meek, F. B. and Hayden, F. V. 1860. Descriptions of new Organic Remains from the Tertiary, Cretaceous, and Jurassic Rocks of Nebraska. Proceedings of the Academy of Natural Sciences of Philadelphia, 1860, p. 175185.Google Scholar
Megerle Von Mühlfeld, J. K. 1811. Entwurf eines neuen System's der Schalthiergehäuse. Erste Antheilung. Die Muscheln. Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesammten Naturkunde, 5:3872, pl. 3.Google Scholar
Morris, J. and Lycett, J. 1853-1855. A Monograph of the Mollusca from the Great Oolite, Chiefly from Minchinhampton and the Coast of Yorkshire. Part II, Bivalves. Monograph of the Palaeontographical Society of London: 80, pl. 1–8; Part III, Bivalves: 81-147, pls. 9-15. London.Google Scholar
Morton, B. 2000. The biology and functional morphology of Fragum erugatum (Bivalvia: Cardiidae) from Shark Bay, Western Australia: the significance of its relationship with entrained zooxanthellae. Journal of Zoology, 251:3952.Google Scholar
Munier-Chalmas, E. 1863. Description d'un noveau genre de Kimmeridge Clay. Journal de Conchyliologie, 11:142.Google Scholar
Musacchio, E. and Vallati, P. S. 2000. La regresión del Barremiano-Aptiano en Bajada del Agrio, Neuquén (Argentina). Abstracts 9th Congreso Geológico Chileno, Puerto Varas, 2:230234.Google Scholar
Nagao, T. 1934. Cretaceous mollusca from the Miyako District, Honshu, Japan. Journal of Faculty of Science Hokkaido Imperial University, Ser. 4, 1:177277, 17 pls.Google Scholar
Nagao, T. 1938. Some molluscan fossils from the Cretaceous deposits of Hokkaido and Japanese Saghalin. Pt. 1 Lamellibranchiata and Scaphopoda. Journal of the Faculty of Science, Hokkaido Imperial University, Ser. 4, 4:117142.Google Scholar
Newell, N. D. 1965. Classification of the Bivalvia. American Museum Novitates, Number 2206, 25 p.Google Scholar
Noetling, F. 1885. Die Fauna der baltischen Cenoman-Geshiebe. Paläontologische Abhandlungen, 2:199247, 8 pls.Google Scholar
Orbigny, A. D'. 1843-1847. Paléontologie Française. Description zoologique et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrains Crétacés. Tome Troisième. Lamellibranches. Arthus Bertrand, Paris, 807 p., Atlas pls. 237-489.Google Scholar
Perkins, B. F. 1961. Biostratigraphic studies in the Comanche (Cretaceous) Series of northern Mexico and Texas. Geological Society of America Memoir, 83.Google Scholar
Phillips, J. 1829. Illustrations of the geology of Yorkshire, or A description of the strata and organic remains of the Yorkshire coast. Wilson, York, 192 p., 14 pls, 9 tables.Google Scholar
Rafinesque, C. S. 1815. Annals of Nature or annual synopsis of new genera and species of animals, plants, etc. discovered in North America by C.S. Rafinesque. First annual number for 1820, Lexington, 16 p.Google Scholar
Ramos, V. A. 1981. Descripción geológica de la Hoja 33c, Los Chihuidos Norte, provincia del Neuquén. Servicio Geológico y Minero Argentino, Buenos Aires, 103 p.Google Scholar
Ramos, V. A. 1999. Plate tectonic setting of the Andean Cordillera. Episodes, 22:183190.Google Scholar
Reeside, J. B. J R. 1923. The fauna of the so-called Dakota Formation of northern central Colorado and its equivalent in southeastern Wyoming. U.S. Geological Survey Professional Paper, 131H:H199H205.Google Scholar
Rhoads, D. C., Speden, I. G., and Waage, K. M. 1972. Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota. The American Association of Petroleum Geologists Bulletin, 56:11001113.Google Scholar
Röding, P. F. 1798. Museum Boltenianum. Hamburg, viii + 199 p.Google Scholar
Roeder, H. A. 1882. Beitrag zur Kenntniss des Terrain agrave Chailles und seiner Zweischalen in der Umgegend von Pfirt im Ober-Elsass p. 110. Fak. Kaiser-Wilhelmsuniversität, Strassbürg.Google Scholar
Roemer, F. A. 1836-1839. Die Versteinerungen des Norddeutschen Oolithen-Gebirges. Hahn, Hannover, 218 pp, 16 pls.Google Scholar
Sageman, B. B. 1989. The benthic boundary biofacies model; Hartland Shale Member, Greenhorn Formation (Cenomanian), Western Interior, North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 74:87110.Google Scholar
Sanders, D. and Baron-Szabo, R. C. 1997. Coral-Rudist bioconstructions in the Upper Cretaceous Haidach Section (Gosau Group; Northern Calcareous Alps, Austria). Facies, 36:6990, pls. 21-23.Google Scholar
Sanders, D. and Höfling, R. 2000. Carbonate deposition in mixed siliciclastic-carbonate environments on top on an orogenic wedge (Late Cretaceous, Northern Calcareous Alps, Austria). Sedimentary Geology, 137:127146.Google Scholar
Sanders, D. and Pons, J. M. 1999. Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development. Palaeogeography, Palaeoclimatology, Palaeoecology, 148:249284.Google Scholar
Scopoli, J. A. 1777. Introdvctio ad historiam natvralem sistens genera lapidvm, plantarvm, et animalivm hactenvs detecta, caracteribvs essentialibvs donata, in tribvs divisa, svbinde ad leges natvrae. p. [19], 3–506, [1–34], Prague.Google Scholar
Scott, R. W. 1970. Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas. Paleontological Contributions, University of Kansas, 52:194, 7 pls.Google Scholar
Shapiro, R. and Fricke, H. C. 2002. Tepee Buttes: fossilized methane-seep ecosystems. Geological Society of America Field Trip Guidebook, 8 p.Google Scholar
Sharpe, D. 1856. Description of some fossils from the secondary rocks of Sunday River and Zwartkop River, South Africa. Geological Society London Transactions, 7:193215.Google Scholar
Simeoni, M. 1988. Foraminiferos del Cretácico inferior de la Formación Agrio en el perfil Villa del Agrio, Cuenca del Neuquén, Argentina. Abstracts 4th Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, 3:147162.Google Scholar
Simeoni, M. 2000. Cambios paleobiológicos próximos al límite Jurásico/Cretácico basados en microfósiles calcáreos de Patagonia Septentrional. Unpublished , Universidad Nacional de la Patagonia “San Juan Bosco,” 219 p.Google Scholar
Sowerby, J. 1812-1822. The Mineral Conchology of Great Britain. Meredith, London, 14, pls. 1–383.Google Scholar
Sowerby, J. de C. 1836. Appendix A, Descriptive Notes respecting the Shells. In W. H. Fitton, Observations on Some of the Strata Between the Chalk and the Oxford Oolite, in the Southeast of England. Transactions of the Geological Society of London, ser. 2, 4:335349, pls. 11-23.Google Scholar
Speden, I. G. 1970. The Type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Part 2. Systematics of the Bivalvia. Peabody Museum of Natural History Bulletin, 33:1222, 42 pls.Google Scholar
Spix, J. B. de and Wagner, J. A. 1827. Testacea fluviatilia quae in itinere per Brasiliam, p. 136, tables 1-29, Münich.Google Scholar
Stanley, S. M. 1970. Relation of Shell Form to Life Habits in the Bivalvia (Mollusca). Geological Society of America Memoir, 125.Google Scholar
Stanton, T. W. 1894. The Colorado Formation and its invertebrate fauna. U.S. Geological Survey Bulletin, Number 106, 288 p., 45 pls. Google Scholar
Stanton, T. W. 1920. The fauna of the Cannonball marine member of the Lance Formation. U.S. Geological Survey Professional Paper, 128A:A1A49, pls. 1–9.Google Scholar
Stephenson, L. W. 1936. Geology and paleontology of the Georges Bank Canyons. Part II. Upper Cretaceous fossils from Georges Bank (including species from Banquereau, Nova Scotia). Geological Society of America Bulletin, 47:367410, 5 pls.Google Scholar
Stephenson, L. W. 1941. The larger invertebrate fossils of the Navarro Group of Texas (Exclusive of corals and crustaceans and exclusive of the fauna of the Escondido Formation). The University of Texas Publication, Number 4101, 641 p., 95 pls., 7 tables.Google Scholar
Stephenson, L. W. 1952. Larger Invertebrate Fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geological Survey Professional Paper, 242:1226, pls. 8-59.Google Scholar
Stephenson, L. W. 1954. Additions to the Fauna of the Raritan Formation (Cenomanian) of New Jersey. U.S. Geological Survey Professional Paper, 264B:B25B43, pls. 6–8.Google Scholar
Stewart, R. L. 1930. Gabb's California Cretaceous and Tertiary Type Lamellibranchs. The Academy of Natural Sciences of Philadelphia, Special Publication, 3, 314 p., 17 pls.Google Scholar
Stipanicic, P. N. and Rodrigo, F. 1969. El diastrofismo Eo y Mesocretácico en Argentina y Chile, con referencias a los movimientos jurásicos de la Patagonia. Abstracts 4th Jornadas Geológicas Argentinas, Buenos Aires, 2:337352.Google Scholar
Stoliczka, F. 1870, 1871. Cretaceous fauna of southern India. v. 3. The Pelecypoda, with a review of all known genera of this Class, fossil and recent. Geological Survey of India, Palaeontologia Indica, ser. 6, 3:1537, 50 pls.Google Scholar
Tamura, M. 1975. On the Bivalvian faunas from the Gyliakian of Japan. Memoirs of the Faculty of Education, Kumamoto University, sec. 1 (Natural Science), 24:5964, 1 pl.Google Scholar
Tamura, M. 1976. Cenomanian Bivalves from the Mifune Group, Japan. Part 1. Memoirs of the Faculty of Education, Kumamoto University, Natural Sciences, 25:4559, 3 pls.Google Scholar
Tamura, M. 1977. Cenomanian Bivalves from the Mifune Group, Japan. Part 2. Memoirs of the Faculty of Education, Kumamoto University, Natural Sciences, 26:107144, 13 pls.Google Scholar
Tamura, M. and Packard, E. L. 1972. The Genotype Species of Anthonya Gabb. Memoirs of the Faculty of Education, Kumamoto University, Natural Sciences, 20:2230, 1 pl.Google Scholar
Tashiro, M. and Kozai, T. 1988. Bivalve fossils from the type Monobegawa Group (Part 3). Research Reports of the Kochi University, 37:3364, 4 pls.Google Scholar
Tashiro, M. and Takatsuka, K. 1991. Upper Albian bivalves from the Goshonoura Group. Memoirs of the Faculty of Science, Kochi University, Series E, Geology, 12:110, pls. 1, 2.Google Scholar
Tate, R. 1889. Description of some new species of marine Mollusca from South Australia and Victoria. Transactions of the Royal Society of South Australia, 11:6066.Google Scholar
Ten Hove, H. A. and van den Hurk, P. 1993. A review of recent and fossil serpulid “reefs”; actuopalaeontology and the “Upper Malm” serpulid limestones in NW Germany. Geologie en Mijnbouw, 72:2367.Google Scholar
Todd, J. A. and Palmer, T. J. 2002. The Jurassic bivalve genus Placunopsis: new evidence on anatomy and affinities. Palaeontology, 45:487510.Google Scholar
Twenhofel, W. H. 1924. The Geology and Invertebrate Paleontology of the Comanchean and “Dakota” Formations of Kansas. Kansas Geological Survey Bulletin, Number 9, 128 p.Google Scholar
Uliana, M. A., Dellapé, D. A., and Pando, G. A. 1975. Distribución y génesis de las sedimentitas rayosianas (Cretácico inferior de las Provincias de Neuquén y Mendoza, República Argentina). Abstracts 2th Congreso Iberoamericano de Geología Económica, Buenos Aires, 1:151176.Google Scholar
Vallati, P. S. 2001. Bioestratigrafía (Palinología) del Cretácico temprano y medio en Patagonia Septentrional y Central. Unpublished , Universidad Nacional de la Patagonia “San Juan Bosco,” 278 p.Google Scholar
Vallati, P. S. 2006. Las primeras angiospermas en el Cretácico de la Cuenca Neuquina (centro oeste de Argentina): aspectos geológicos relacionados. Revista Brasileira de Paleontología, 9:8392.Google Scholar
Veiga, G. D., Howell, J. A., and Strömbäck, A. 2005. Anatomy of a mixed marine-non-marine lowstand wedge in a ramp setting. The record of a Barremian-Aptian complex relative sea-level fall in the central Neuquén Basin, Argentina, p. 139162. In Veiga, G. D., Spalletti, L. A., Howell, J. A. and Schwarz, E. (eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. Geological Society of London Special Publications, 252.Google Scholar
Villamil, T., Kauffman, E. G., and Leanza, H. A. 1998. Epibiont habitation patterns and their implications for life habits and orientation among trigoniid bivalves. Lethaia, 31:4356.Google Scholar
Vokes, H. 1941. Contributions to the Paleontology of the Lebanon Mountains, Republic of Lebanon, Part 1. A Cenomanian pelecypod fauna from Hajula. American Museum Novitates, Number 1145, 13 p.Google Scholar
Volkheimer, W. and Salas, A. 1976. Estudio palinológico de la Formación Huitrín, Cretácico de la Cuenca Neuquina, en su localidad tipo. Abstracts 6th Congreso Geológico Argentino, Bahía Blanca, 1:433456.Google Scholar
Volkheimer, W., Quattrocchio, M., Salas, A., and Sepúlveda, E. 1976. Caracterización palinológica de formaciones del Jurásico superior y Cretácico Inferior de la Cuenca Neuquina (República Argentina). Abstracts 6th Congreso Geológico Argentino, Bahía Blanca, 1:593608.Google Scholar
Warren, P. S. 1930. New species of fossils from Smoky River and Dunvegan formations, Alberta. Research Council of Alberta Report 21, Appendix, p. 5768, pls. 3-7.Google Scholar
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. University of Washington Memoir, 1.Google Scholar
White, C. A. 1880. Descriptions of new Cretaceous invertebrate fossils from Kansas and Texas. Proceedings of the United States National Museum, 2:292298.Google Scholar
White, C. A. 1883. Contributions to Invertebrate Paleontology, No. 2: Cretaceous Fossils from the Western States and Territories. U.S. Geological Survey, 12th Annual Report, 1:1517.Google Scholar
Whitfield, R. P. 1880. Paleontological report on the fossils collected by the United States Geological and Geographical Survey of the Black Hills, p. 329468, 16 pls. In Newton, H. and Jenney, W. P. (eds.), Report on the Geology and Resources of the Black Hills of Dakota. Washington, Govt. Printing Office.Google Scholar
Woodring, W. P. 1925. Miocene Mollusca from Bowden Jamaica, pelecypods and scaphopods. Carnegie Institution of Washington Publication, Number 366, 564 p., 40 pls. Google Scholar
Woods, H. 1899-1913. A monograph of the Cretaceous Lamellibranchiata of England. Monograph of the Palaeontographical Society of London, 705 p., 104 pls. Google Scholar
Woods, H. 1917. The Cretaceous faunas of the north-eastern part of the South Island of New Zealand. Palaeontological Bulletin, New Zealand Geological Survey, 4:141, pls. 1-20.Google Scholar
Yonge, C.M. 1968. Form and habit in species of Malleus (including the “hammer oysters”) with comparative observations on Isognomon isognomon . Biological Bulletin, 135:378405.Google Scholar
Zinsmeister, W. J. and Macellari, C. E. 1988. Bivalvia (Mollusca) from Seymour Island, Antarctic Peninsula. Geological Society of America Memoir, 169.Google Scholar
Zittel, K. A. 1866. Die Bivalven der Gosaugebilde in den nordöstlichen Alpen. Denkschriften Klasse der Kaiserlichen Akademie der Wissenschaften, math.-nat. Kl., 25:77198, 27 pls.Google Scholar
Supplementary material: File

Lazo and Damborenea supplementary material

Appendix 1

Download Lazo and Damborenea supplementary material(File)
File 39.4 KB
Supplementary material: File

Lazo and Damborenea supplementary material

Appendix 2

Download Lazo and Damborenea supplementary material(File)
File 18.4 KB
Supplementary material: File

Lazo and Damborenea supplementary material

Appendix 3

Download Lazo and Damborenea supplementary material(File)
File 18.9 KB
Supplementary material: File

Lazo and Damborenea supplementary material

Appendix 4

Download Lazo and Damborenea supplementary material(File)
File 18.9 KB
Supplementary material: File

Lazo and Damborenea supplementary material

Appendix 5

Download Lazo and Damborenea supplementary material(File)
File 46.1 KB