Skip to main content Accessibility help
×
Home

Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China

Published online by Cambridge University Press:  11 August 2017

Yun Zhang
Affiliation:
Department of Biology, Peking University, Beijing 100871, People's Republic of China
Leiming Yin
Affiliation:
Nanjing Institute of Geology and Palaeontology, Nanjing 210008, People's Republic of China
Shuhai Xiao
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts 02138
Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts 02138

Abstract

Permineralized fossils of the terminal Proterozoic (600–550 Ma) Doushantuo Formation, China, provide an unusually clear window on biological diversity just before the Ediacaran radiation. In the eastern Yangtze Gorges region, cherts in lower and upper Doushantuo carbonates preserve prokaryotes and protists from subtidal marine environments below and above fair weather wave base, respectively. Phosphorites in the Weng'an district to the south contain diverse acanthomorphic acritarchs as well as cellularly preserved thalloid algae. Twelve taxa of probable cyanobacteria are recognized. None is endemic to the Doushantuo Formation, and most have long stratigraphic ranges. The apparent restriction of two species to late Neoproterozoic and Cambrian rocks may reflect secular variation in taphonomic circumstance rather than evolution. Thirty-one species of spheromorphic and acanthomorphic acritarchs are recognized, about half of which occur elsewhere in rocks of the same approximate age. At least some of the eight formally described species of multicellular algae can be assigned with confidence to the Rhodophyta; these fossils provide a glimpse of structural and reproductive diversity in Neoproterozoic algae that is, to date, unique. Several reports of Doushantuo animal fossils have been published; most compelling are triact spicules identified in chert nodules. Along with more than two dozen taxa of compressed macrofossils preserved in carbonaceous shales from the top of the formation, Doushantuo permineralizations indicate that large animals radiated into a world rich in prokaryotic, protistan, and, even, multicellular diversity.

Type
Research Article
Copyright
Copyright © 1998, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aldridge, R. J., and Armstrong, H. S. 1981. Spherical phosphatic microfossils from the Silurian of North Greenland. Nature, 292:531533.CrossRefGoogle Scholar
Awramik, S. M., MCmenamin, D. S., Chongyu, Yin, Ziqiang, Zhao, Qixiu, Ding, and Shusen, Zhang. 1985. Prokaryotic and eukaryotic microfossils from a Proterozoic/Phanerozoic transition in China. Nature, 315:655658.CrossRefGoogle Scholar
Bengtson, S., and Zhao, Yue. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451648.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.) Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. Bulletin of the New State Museum 463.Google Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology, 59:741765.Google Scholar
Bold, H. C., and Wynne, M. J. 1985. Introduction to the Algae, Second Edition. Prentice-Hall, Engelwood Cliffs, New Jersey, 720 p.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science, 261:12931298.CrossRefGoogle ScholarPubMed
Brasier, M., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25:303306.2.3.CO;2>CrossRefGoogle Scholar
Briggs, D. E. G., Kear, A. J., Martill, D. M., and Wilby, P. R. 1993. Phosphatization of soft-tissue in experiments and fossils. Journal of the Geological Society, London, 150:10351038.CrossRefGoogle Scholar
Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels, C. 1996. Controls on the pyritization of exceptionally preserved fossils: an analysis of the Lower Devonian Hunsruck Slate of Germany. American Journal of Science, 296:633663.CrossRefGoogle Scholar
Brookfield, M. E. 1994. Problems in applying preservation, facies and sequence models to Sinian (Neoproterozoic) glacial sequences in Australia and Asia. Precambrian Research, 70:113143.CrossRefGoogle Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J., and Chandler, F. W. 1992. Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35:943957.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1990. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science, 250:104107.CrossRefGoogle ScholarPubMed
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Canfield, D. E., and Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382:127132.CrossRefGoogle ScholarPubMed
Fang, Cao. 1985. The new data of algal microfossils from the Sinian Doushantuo Formation. Bulletin, Tianjin Institute of Geology and Mineral Resources, 12:183193.Google Scholar
Rui-Ji, Cao, and Cong-Liu, Yu. 1991. Late Sinian microstromatolites first discovered from Shimen, Hunan. Acta Micropalaeontologica Sinica, 8:365371.Google Scholar
Menge, Chen, and Kuiwu, Liu. 1986. The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites. Scientia Geologica Sinica, 1:4653.Google Scholar
Menge, Chen, and Zongzheng, Xiao. 1991. Discovery of the macrofossils in the Upper Sinian Doushantuo Formation at Miaohe, Eastern Yangtze Gorges. Scientia Geologica Sinica, 4:317324.Google Scholar
Menge, Chen, and Zongzheng, Xiao. 1992. Macrofossil biota from the upper Sinian Doushantuo Formation in eastern Yangtze Gorges. Acta Palaeontologica Sinica, 31:513529.Google Scholar
Menge, Chen, Zongzheng, Xiao, and Xunlai, Yuan. 1994. A new assemblage of megafossils—Miaohe biota from the upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica, 33:391403.Google Scholar
Chumakov, N. M. 1990. Laplandian glacial horizon and its equivalents, p. 191225. In Sokolov, B. S. and Fedonkin, M. A. (eds.) The Vendian System. Volume 2: Regional Geology. Springer-Verlag, Berlin.Google Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society of London, 152:599611.CrossRefGoogle Scholar
Compston, W., Compston, M.S., Williams, I. S., Kirchvink, J. L., Zichao, Zhang, and Guogan, Ma. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London, 149:171184.CrossRefGoogle Scholar
Cook, P. J., and O'Brien, G. W. 1990. Neogene to Holocene phosphorites of Australia, p. 98115. In Burnett, W. C. and Riggs, S. R. (eds.) Phosphate Deposits of the World: Volume 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Cook, P. J., and Shergold, J. H. (eds.). 1986. Phosphate Deposits of the World: Volume 1. Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge, 386 p.Google Scholar
Cooper, J. A., Jenkins, R. J. F., Compston, W., and Williams, I. S. 1992. Ion-probe zircon dating of a mid-Early Cambrian tuff in South Australia. Journal of the Geological Society, London, 149:185192.CrossRefGoogle Scholar
Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of bilaterian bodyplans: evolution of developmental regulatory mechanisms. Science, 270:13191325.CrossRefGoogle Scholar
Deflandre, G. 1937. Microfossiles des silex crétacés. Deuxième partie. Flagellés incertae sedis. Hystrichosphaeridès. Sarcodinès. Organismes divers. Annales de Paléontologie, 26:51103.Google Scholar
Lianfang, Ding, Yong, Li, Xiawo, Hu, Yaping, Xiao, Chunqian, Su, and Jiancheng, Huang. 1996. Sinian Miaohe Biota. Geological Publishing House, Beijing, 221 p.Google Scholar
Qixiu, Ding, and Yusheng, Xing. 1988. Soft-bodied metazoans and spongia, p. 101106. In Ziqiang, Zhao et al. (eds.) The Sinian System of Hubei. China University of Geosciences Press, Wuhan.Google Scholar
Dixon, P. S. 1973. Biology of the Rhodophyta. Oliver and Boyd, Edinburgh, 285 p.Google ScholarPubMed
Chenghua, Duan, and Fang, Cao. 1989. A new discovery of vase-shaped microfossils in the eastern Yangtze Gorges of Hubei Province. Bulletin Tianjin Institute of Geology and Mineral Resources, 21:129147.Google Scholar
Eisenack, A. 1958. Tasmanites Newton 1875 und Leiosphaeridia n.g. als Gattungen der Hystrichosphaeridea. Palaeontographica A, 110:119.Google Scholar
Eisenack, A. 1969. Zur Systematik einiger paläozoischer Hystrichosphaeren (Acritarcha) des baltischen Gebietes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 133:245266.Google Scholar
Föllmi, K. B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews, 40:55124.CrossRefGoogle Scholar
Fritsch, F. E. 1965. The Structure and Reproduction of Algae, Volume 2. Cambridge University Press, Cambridge, 939 p.Google Scholar
Gächter, R., Meyer, J. S., and Mares, A. 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnology and Oceanography, 33:15421558.Google Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
German, T. N. 1990. Organic World Billion Year Ago. Nauka, Leningrad, 50 p.Google Scholar
Glenn, C. R., et al. 1994. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geologicae Helvetiae, 87:747788.Google Scholar
Golovenok, V. K., Belova, M. Y., and Kurbatskaya, F. A. 1989. Pervaya nakhodka obruchevell b vendskikh otlozheniyakh srednego Urala (First discovery of Obruchevella in the Vendian of the central Urals). Dokladi Akademii Nauk SSSR, 309:701705.Google Scholar
Gorokhov, I. M., Clauer, N., Turchenko, T. L., Melnikov, N. N., Kutyavin, E. P., Pirrus, E., and Baskakov, A. V. 1994. Rb-Sr systematics of Vendian-Cambrian claystones from the East European Platform: implications for a multi-stage illite evolution. Chemical Geology, 112:7189.CrossRefGoogle Scholar
Grabau, A. W. 1922. The Sinian System. Bulletin, Geological Society of China, 1:14.Google Scholar
Graham, L. E. 1993. Origin of Land Plants. John Wiley and Sons, New York, 287 p.Google ScholarPubMed
Grant, S. W. F., Knoll, A. H., and Germs, G. J. B. 1991. Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: Origin, diagenesis, and implications. Journal of Paleontology, 65:118.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.CrossRefGoogle Scholar
Hofmann, H. J., and Jackson, G. D. 1994. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontological Society Memoir, 37:139.Google Scholar
Hofmann, H. J., Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran remains from intertillitic beds in northwestern Canada. Geology, 18:11991202.2.3.CO;2>CrossRefGoogle Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology, 22:496498.2.3.CO;2>CrossRefGoogle Scholar
Jenkins, R. J. F., McKirdy, D. M., Foster, C. B., O'Leary, T., and Pell, S. D. 1992. The record and stratigraphic implications of organic-walled microfossils from the Ediacaran (terminal Proterozoic) of South Australia. Geological Magazine, 129:401410.CrossRefGoogle Scholar
Johnson, J. H. 1960. Paleozoic Solenoporaceae and related red algae. Quarterly of the Colorado School of Mines, 55(3), 77 p.Google Scholar
Kah, L. C. 1997. Unpublished Ph.D. Dissertation. Harvard University, Cambridge MA, 190 p.Google Scholar
Kao, , Hsiung, C. S. Y. H., and Kao, P. 1934. Preliminary notes on the Sinian stratigraphy of North China. Bulletin Geological Society of China, 13:243288.CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., and Narbonne, G. M. 1997. Isotopes, ice ages, and Neoproterozoic Earth history. Proceedings of the National Academy of Sciences, USA, 94:66006605.CrossRefGoogle Scholar
Knoll, A.H. 1981. Paleoecology of late Precambrian microbial assemblages, p. 1754. In Niklas, K. J. (ed.) Paleobotany, Paleoecology, and Evolution. Volume I. Praeger, New York.Google Scholar
Knoll, A.H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A.H. 1985. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society, London, 311B:111122.CrossRefGoogle Scholar
Knoll, A.H. 1992a. The early evolution of eukaryotes: a geological perspective. Science, 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A.H. 1992b. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751774.Google Scholar
Knoll, A.H. 1994. Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, USA, 91:67436750.CrossRefGoogle ScholarPubMed
Knoll, A.H. 1996. Archean and Proterozoic paleontology, p. 5180. In Jansonius, J. and McGregor, D. C. (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists, Tulsa.Google Scholar
Knoll, A.H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A.H., and Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 102:207211.CrossRefGoogle Scholar
Knoll, A.H., and Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356:673678.CrossRefGoogle ScholarPubMed
Knoll, A.H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative Earth history and Late Permian mass extinction. Science, 273:452457.CrossRefGoogle ScholarPubMed
Knoll, A.H., Fairchild, I. J., and Swett, K. 1993. Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition. Palaios, 8:512525.CrossRefGoogle ScholarPubMed
Knoll, A.H., Swett, K., and Burkhardt, E. 1989. Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. Journal of Paleontology, 63:129145.Google ScholarPubMed
Knoll, A.H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.CrossRefGoogle ScholarPubMed
Kolosova, S. P. 1990. Drevneyeshne akanthomorfiti vostoka sibirskoye platformi (Ancient acanthomorphs of the eastern Siberian Platform). Organicheskiye mir i stratigrafiya otlozheniye neftegazonosnikh i rudonosnikh rayeonov Yakutii (Organic World and Stratigraphy of Deposits in Oil-gas and Ore-bearing Regions of Siberia), 4997-B90:245.Google Scholar
Kolosova, S. P. 1991. Pozdnedokembriyskie shipovatie mikrofossilii vostoka sibirkoy platformi (Late Precambrian acanthomorphic acritarchs from the eastern Siberian Platform). Algologiya (Algologia), 1:5359.Google Scholar
Krajewski, K. P., et al. 1994. Biological processes and apatite formation in sedimentary environments. Eclogae Geologicae Helvetiae, 87:701745.Google Scholar
Lambert, I. B., Walter, M. R., Wenlong, Zang, Songnian, Lu, and Guogan, Ma. 1987. Palaeoenvironment and carbon isotope stratigraphy of the upper Proterozoic carbonates of the Yangtze Platform. Nature, 325:140142.CrossRefGoogle Scholar
Lee, J. S., and Chao, Y. T. 1924. Geology of the gorge district of the Yangtze from Yichang to Tzekuei, with special reference to the development of the gorges. Bulletin, Geological Society of China, 3:351391.CrossRefGoogle Scholar
Yueyan, Li. 1986. Proterozoic and Cambrian phosphorites – regional review: China, p. 4269. In Cook, P.J. and Shergold, J. H. (eds.) Phosphate Deposits of the World: Volume 1. Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Lister, T. R. 1970. A monograph of the acritarchs and Chitinozoa from the Wenlock and Ludlow Series of the Ludlow and Millichope areas, Shropshire. Part I. Palaeontographical Society Monographs, 124:1100.Google Scholar
Liu, H. 1991. The Sinian System in China. Science Press, Beijing, 388 p.Google Scholar
Liu, H., Sha, Q., Hu, S., Zhu, M., and Hu, H. 1966. Sinian stratigraphy and correlation in northern Guizhou. Journal of Stratigraphy, 1:137162. (In Chinese).Google Scholar
Lo, S.-C. C. 1980. Microbial fossils from the lower Yudoma Suite, earliest Phanerozoic, eastern Siberia. Precambrian Research, 13:109166.CrossRefGoogle Scholar
Loeblich, A. R. 1970. Morphology, ultrastructure and distribution of Paleozoic acritarchs. Proceedings of the North American Paleontological Convention, G:705788.Google Scholar
Songnian, Lu, Guogan, Ma, Zhenjia, Gao, and Weixing, Lin. 1985. Sinian ice ages and glacial sedimentary facies-areas in China. Precambrian Research, 29:5363.CrossRefGoogle Scholar
Guogan, Ma, Huaqin, Lee, and Zichao, Zhang. 1984. An investigation of the limits of the Sinian System in South China. Bulletin, Yichang Institute of Geology and Mineral Resources, 8:129.Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios, 4:519532.CrossRefGoogle ScholarPubMed
Mankiewicz, C. 1992. Obruchevella and other microorganisms in the Burgess Shale: preservation and affinity. Journal of Paleontology, 66:717729.CrossRefGoogle Scholar
Martill, D. M. 1988. Preservation of fish in the Cretaceous of Brazil. Palaeontology, 31:118.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K.E., Jeganathan, A., and Watt, D. S. 1994. Palaeoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58:529532.CrossRefGoogle Scholar
Mendelson, C. V., and Schopf, J. W. 1982. Proterozoic microfossils from the Sukhaya Tunguska, Shorikha and Yudoma formations of the Suberian Platform. Journal of Paleontology, 56:4283.Google Scholar
Moczydlowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Morad, S., and Al-Aasm, I. S. 1994. Conditions of formation and diagenetic evolution of Upper Proterozoic phosphate nodules from southern Sweden: evidence from petrology, mineral chemistry, and isotopes. Sedimentary Geology, 88:267282.CrossRefGoogle Scholar
Müller, K. J. 1983. Crustacea with soft parts from the upper Cambrian of Sweden. Lethaia, 16:93109.CrossRefGoogle Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the upper Windermere Supergroup (Neoproterozoic), Mackenzie Mountains, northwestern Canada. Geological Society of America Bulletin, 106:12811292.2.3.CO;2>CrossRefGoogle Scholar
Nyberg, A. V., and Schopf, J. W. 1984. Microfossils in stromatolitic cherts from the upper Proterozoic Min'yar Formation, southern Ural Mountains, USSR. Journal of Paleontology, 58:738772.Google ScholarPubMed
O'Brien, G. W., Milnes, A. R., Veeh, H. H., Heggie, D. T., Riggs, S. R., Cullen, D. J., Marshall, J. F., and Cook, P. J. 1990. Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite-glauconite association on the east Australian continental margin. Geological Society Special Publication, 52:6186.CrossRefGoogle Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269309.CrossRefGoogle Scholar
Perasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P., and Adoutte, A. 1989. Origin of the algae. Nature, 339:142144.CrossRefGoogle ScholarPubMed
Poignant, A. F. 1991. The Solenoporaceae: a general point of view, p. 8897. In Riding, R. (ed.) Calcareous Algae and Stromatolites. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Pyatiletov, V. G. 1980. Yudomskii kompleks microfossilii Yuzhnoi Yakutii (Yudoma complex microfossils from southern Yakutia). Geologiya i Geofizika, 7:820.Google Scholar
Pyatiletov, V. G., and Rudavskaya, V. V. 1990 (Russian version in 1985) Acritarchs of the Yudoma complex, p. 179188. In Sokolov, B. S. and Iwanowski, A. B. (eds.) The Vendian System, Volume 1, Paleontology. Springer-Verlag, Berlin.Google Scholar
Reimers, C. E., Kastner, M., and Garrison, R. E. 1990. The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. p. 300311 In Burnett, W. C. and Riggs, S. R. (eds.), Phosphate Deposits of the World: Volume 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Reitlinger, E.A. 1948. Kembriiskie foraminiferi Yakutii (Cambrian foraminifera of Yakutia). Byulletin' Moskovskogo Obshchestva Ispyatatelej Prirody, Otdelenie Geologii, 23:7781.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.CrossRefGoogle Scholar
Richthofen, F. von 1882. China, 2. Ergebnisse eigener Reisen und darauf gegrundeter Studien. D. Reimer, Berlin.Google Scholar
Ross, G. M., Bloch, J. D., and Krouse, H. R. 1995. Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate. Precambrian Research, 73:71100.CrossRefGoogle Scholar
Sarjeant, W. A. S., and Stancliffe, R. P. W. 1994. The Micrhystridium and Veryhachium complexes (Acritarcha: Acanthomorphitae and Polygonomorphitae): a taxonomic reconsideration. Micropaleontology, 40:177.CrossRefGoogle Scholar
Schopf, J.W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J.W., and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Schulze, H.-P. 1989. Three-dimensional muscle preservation in Jurassic fishes of Chile. Revista Geologica de Chile, 16:183215.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological, and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society, London, 311B:523.CrossRefGoogle Scholar
Sergeev, V. N., Knoll, A. H., and Grotzinger, J. P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Paleontological Society Memoir, 39:137.Google Scholar
Sogin, M. L. 1994. The origin of eukaryotes and evolution into major kingdoms, p. 181192. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84. Columbia University Press, New York.Google Scholar
Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A., and Peattie, D. A. 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia . Science, 290:7577.CrossRefGoogle Scholar
Spjeldnaes, N. 1963. A new fossil (Papillomembrana sp.) from the Upper Precambrian of Norway. Nature, 200:6364.CrossRefGoogle Scholar
Spjeldnaes, N. 1967. Fossils from pebbles of the Biskopåsen Formation in southern Norway. Norges Geologiske Undersokelse, 251:5382.Google Scholar
Steiner, M. 1994. Die neoproterozoischen Megaalgen Sudchinas. Berliner Geowissenschaftliche Abhandlungen, Reihe E, 15:1146.Google Scholar
Weiguo, Sun. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge: Paracharnia gen. nov. Precambrian Research, 31:361375.CrossRefGoogle Scholar
Weiguo, Sun. 1989. Subdivisions and correlations of the Upper Precambrian in China and Australia. Palaeontologia Cathayana 4:122.Google Scholar
Tang, T., Zhang, J., and Jiang, X. 1978. Discovery and significance of the late Sinian fauna from western Hunan and Hubei. Acta Stratigraphic Sinica, 2:3245.Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. W.H. Freeman, San Francisco, 1028 p.Google Scholar
Tiwari, M., and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Turner, R. E. 1994. Acritarchs from the type area of the Ordovician Caradoc Series, Shropshire, England. Palaeontographica B, 190:87157.Google Scholar
Van Den Hoek, C., Mann, D. G., and Jahns, H. M. 1995. Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, 623 p.Google Scholar
Van Waveren, I. M. 1992. Morphology of probable planktonic crustacean eggs from the Holocene of the Banda Sea (Indonesia), p. 89120. In Head, M. J. and Wrenn, J.H. (eds.) Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Tulsa.Google Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingsö beds in southern Sweden. Fossils and Strata, 9:157.Google Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Vidal, G., and Knoll, A. H. 1983. Proterozoic plankton. Geological Society of America Memoir, 161:265277.CrossRefGoogle Scholar
Vidal, G., and Nystuen, J. P. 1990. Micropaleontology, depositional environment, and biostratigraphy of the upper Proterozoic Hedmark Group, southern Norway. American Journal of Science, 290A:170211.Google Scholar
Wang, H. 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing, 85 p.Google Scholar
Wang, Y., Yin, G., Zheng, S., Qing, S., Zhu, S., Chen, Y., Luo, Q., Wang, F., and Qian, Y. 1984. The Upper Precambrian and Sinian-Cambrian Boundary in Guizhou. The People's Publishing House of Guizhou, Guiyang, 170 p.Google Scholar
Wang, Z., Yang, J., and Sun, W. 1996. Carbon isotope record of Sinian seawater in Yangtze Platform. Geological Journal of Universities, 2:112120.Google Scholar
Wilby, P. R., Briggs, D. E. G., Bernier, P., and Gaillard, C. 1996. Role of microbial mats in the fossilization of soft tissues. Geology, 24:787790.2.3.CO;2>CrossRefGoogle Scholar
Willis, B., Blackwelder, E., and Sargent, R. H. 1907. Research in China. Carnegie Institute of Washington, Washington.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Elsevier, Amsterdam, 185 p.Google Scholar
Wright, A. E., Fairchild, I. J., Moseley, F., and Downie, C. 1993. The Lower Cambrian Wrekin Quartzite and the age of its unconformity on the Ercall Granophyre. Geological Magazine, 130:257264.CrossRefGoogle Scholar
Xiao, S., Knoll, A. H., and Yuan, X. 1998. Morphological reconstruction of Miaohephyton, a probable brown alga from the terminal Proterozoic Doushantuo Formation, China. Journal of Paleontology, in press.Google Scholar
Xue, Y. S., Tang, T.-F., Tian, F., and Yu, C.-L. 1992. Discovery of the oldest skeletal fossils from upper Sinian Doushantuo Formation in Weng'an, Guizhou, and its significance. Acta Palaeontologica Sinica, 31:530539.Google Scholar
Xue, Y. S., Tang, T., Yu, C., and Zhou, C. 1995. Large spheroidal Chlorophyta fossils from the Doushantuo Formation phosphoritic sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34:688706.Google Scholar
Yakshchin, M. S., and Luchinina, V. A. 1981. Novie dannie po iskopaemim vodoroslyam semeistva Oscillatoriaceae (Kirchn.) Elenkin (New materials of the fossil alga family Oscillatoriaceae (Kirchn.) Elenkin), p. 2834. In Anonymous (ed.) Pogranishchnie otlozheniya dokembriya i kembriya Sibirskoe platformi: biostratigrafiya, paleontologia, usloviya obrazovaniya (Precambrian-Cambrian Boundary beds, Siberian Platform: Biostratigraphy, Paleontology, Conditions of Formation). Nauka, Novosibirsk.Google Scholar
Yang, J., Xue, Y., and Tao, X. 1994. Sm-Nd radiometric dating of the Doushantuo Formation, South China. Chinese Science Bulletin, 39(1): 6568.Google Scholar
Chongyu, Yin. 1990. Spinose acritarchs from the Toushantuo Formation and its geological significance. Acta Micropalaeontologica Sinica, 7:265270.Google Scholar
Chongyu, Yin, and Gao, L. 1995. The early evolution of the acanthomorphic acritarchs in China and their biostratigraphic implication. Acta Geologica Sinica, 469:360373.Google Scholar
Chongyu, Yin, and Liu, G. 1988. Micropaleofloras of the Sinian System of Hubei, p. 91100, 170–180. In Anonymous (ed.), The Sinian System of Hubei. China University of Geosciences Press, Wuhan.Google Scholar
Chongyu, Yin, Yue, Z., Gao, L., and Ding, Q. 1992. Microfossils from the cherts of the Lower Cambrian Shuijingtuo Formation at Miaohe, Zigui, Hubei Province. Acta Geologica Sinica, 66:369380.Google Scholar
Leiming, Yin. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana, 2:229249.Google Scholar
Leiming, Yin. 1986. Sinian microfossil plants from the Yangtze region. Dicengxue Zazhi (Journal of Stratigraphy), 4:262269.Google Scholar
Leiming, Yin. 1987. Microbiotas of latest Precambrian sequences in China. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary, 1:415494.Google Scholar
Leiming, Yin. 1991. Ecological history of Doushantuo period in Yangtze Gorge district, p. 110. In Yugan, Jin, Jungeng, Wang, and Shanhong, Xu (eds.) Palaeoecology of China, Volume 1. Nanjing University Press, Nanjing.Google Scholar
Leiming, Yin, and Zaiping, Li. 1978. Precambrian microfossils of Southwest China. Memoir, Nanjing Institute of Geology and Palaeontology, Academia Sinica, 10:41102.Google Scholar
Leiming, Yin, and Yao-Song, Xue. 1993. An extraordinary microfossil assemblage from terminal Proterozoic phosphate deposits in South China. Chinese Journal of Botany, 5:168175.Google Scholar
Xunlai, Yuan, Qifei, Wang, and Yun, Zhang. 1993. Late Precambrian Weng'an biota from Guizhou, southwest China. Acta Micropalaeontologica Sinica, 10:409420.Google Scholar
Wenlong, Zang. 1996. Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia. Precambrian Research, 74:119176.Google Scholar
Wenlong, Zang, and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Association of Australasian Palaeontologists Memoir 12, 132 p.Google Scholar
Zechman, F. W., Theriot, E. C., Zimmer, E. A., and Chapman, R. L. 1990. Phylogeny of the Ulvophyceae (Chlorophyta): cladistic analysis of nuclear-encoded rRNA sequence data. Journal of Phycology, 26:700710.CrossRefGoogle Scholar
Xi-Guang, Zhang, and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.Google Scholar
Xi-Guang, Zhang, and Pratt, B. R. 1996. Early Cambrian palaeoscoleid cuticles from Shaanxi, China. Journal of Paleontology, 70:275279.Google Scholar
Yun, Zhang. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113132.CrossRefGoogle Scholar
Yun, Zhang, and Xunlai, Yuan. 1992. New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China. Lethaia, 25:118.CrossRefGoogle Scholar
Zhongying, Zhang. 1981a. Precambrian microfossils from the Sinian of South China. Nature, 289:792793.CrossRefGoogle Scholar
Zhongying, Zhang. 1981b. A new Oscillatoriaceae-like filamentous microfossil from the Sinian (late Precambrian) of western Hubei province, China. Geological Magazine, 118:201216.CrossRefGoogle Scholar
Zhongying, Zhang. 1982. Filamentous microfossils from the Doushantuo Formation (late Sinian) of South China. Journal of Paleontology, 56:12511256.Google Scholar
Zhongying, Zhang. 1984a. On the occurrence of Obruchevella from the Doushantuo Formation (Late Sinian) of western Hubei and its significance. Acta Palaeontologica Sinica, 23:447451.Google Scholar
Zhongying, Zhang. 1984b. A new microphytoplankton species from the Sinian of western Hubei Province. Acta Botanica Sinica, 26:9498.Google Scholar
Zhongying, Zhang. 1984c. Microflora of the late Sinian Doushantuo Formation, Hubei Province, China. in Xie, L. and Zhang, J. (eds), Scientific Papers on Geology for International Exchange: Prepared for the 27th International Geological Congress, p. 129142. Geological Publishing House, Beijing.Google Scholar
Zhongying, Zhang. 1985. Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China. Precambrian Research, 28:163173.CrossRefGoogle Scholar
Zhongying, Zhang. 1986. New material of filamentous fossil cyanophytes from the Doushantuo Formation (Late Sinian) in the eastern Yangtze Gorges. Scientia Geologica Sinica, 1:3037.Google Scholar
Zhongying, Zhang. 1994. Comments on the “vase-shaped microfossils” from the Doushantuo Formation of the eastern Yangtze Gorges. Acta Micropalaeontologica Sinica, 11:369371.Google Scholar
Zhao, D. 1986. The age and genesis of phosphorites in the Tiantaishan and Chadian zones, southern Shaanxi Province. Scientia Geologica Sinica, 3:236247.Google Scholar
Zhao, Z., Xing, Y., Ma, G., and Chen, Y. 1985. Biostratigraphy of the Yangtze Gorge Area, (1) Sinian. Geological Publishing House, Beijing, 143 p.Google Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. 1988. The Sinian System of Hubei. China University of Geosciences Press, Wuhan, 205 p.Google Scholar
Shixing, Zhu, and Yangeng, Wang. 1984. Phosphatic stromatolites in Kaiyang phosphorite deposits, Guizhou, China, p. 153164. In Anonymous (ed.), Proceedings of the 5th International Symposium on Phosphate. Geological Publishing House, Beijing.Google Scholar
Shixing, Zhu Yangeng, Wang, and Lin, Zhang. 1984. Formation of the Kaiyang phosphorites in China as relates to ancient microorganisms, p. 165193. In Anonymous (ed.) Proceedings of the 5th International Symposium on Phosphate. Geological Publishing House, Beijing.Google Scholar
Zhu, W., and Chen, M. 1984. On the discovery of macrofossil algae from the late Sinian in the eastern Yangtze Gorges, south China. Acta Botanica Sinica, 26:558560.Google Scholar
Li, C.-W., Chen, J.-Y., and Hue, T. -E. 1998. Precambrian sponges with cellular structures. Science, 279:879882.CrossRefGoogle ScholarPubMed
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between 11th August 2017 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-gwqw7 Total loading time: 0.689 Render date: 2021-01-28T06:56:03.063Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *