Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T04:14:40.316Z Has data issue: false hasContentIssue false

A new genus of eurypterid (Chelicerata, Eurypterida) from the Upper Devonian salt deposits of Belarus

Published online by Cambridge University Press:  06 July 2018

Dmitry P. Plax
Affiliation:
Belarusian National Technical University, Nezavisimosti Avenue, 65, 220013, Minsk, Belarus 〈agnatha@mail.ru〉
James C. Lamsdell
Affiliation:
Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Brooks Hall, Morgantown, West Virginia 26506, USA 〈james.lamsdell@mail.wvu.edu〉
Matthew B. Vrazo
Affiliation:
Department of Paleobiology, National Museum of Natural History, The Smithsonian Institution, Washington, DC 20013-7012, USA 〈vrazom@si.edu〉
Dmitry V. Barbikov
Affiliation:
Republican Unitary Enterprise Production Amalgamation ‘Belaruskali,’ 5 Korzha Street, 223710, Soligorsk, Belarus 〈barbikov@kali.by〉

Abstract

We describe a new stylonurid eurypterid from the evaporitic potassium-salt deposits of the Upper Devonian (Famennian) Soligorsk Formation in the Pripyat Trough of Belarus. All specimens are assigned to Soligorskopterus tchepeliensis new genus new species, which represents the first formally described eurypterid species from Belarus. The occurrence of well-preserved eurypterids in these unusual evaporite deposits is most likely due to transport from freshwater stream habitats into a hypersaline setting following death. Soligorskopterus tchepeliensis n. gen. n. sp. appears to be intermediate between the traditionally considered parastylonurids and stylonurids and thus extends our understanding of stylonurid evolution in the mid-Paleozoic. Soligorskopterus n. gen. extends the occurrence of Famennian eurypterids into eastern Laurussia and the Stylonuridae into the Upper Devonian, and this taxon could be part of a global eurypterid habitat shift that took place in the Late Devonian.

UUID: http://zoobank.org/466b0195-6199-495b-9270-6f032e2d7493

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P.A., 1986, Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport: Geology, v. 14, p. 979981.Google Scholar
Anderson, R.P., McCoy, V.E., McNamara, M.E., and Briggs, D.E.G., 2014, What big eyes you have: The ecological role of giant pterygotid eurypterids: Biology Letters, v. 10, p. 20140412 doi: 10.1098/rsbl.2014.0412.Google Scholar
Arkhangelskaya, A.D., 1985, [Zonal spore assemblages and stratigraphy of the Lower and Middle Devonian of the Russian Platform], in Menner, V.V., and Byvsheva, T.V., eds., Atlas of Spores and Pollen of Oil and Gas Bearing Deposits of the Russian and Turonskoi Platform, v. Volume 253: Moscow, Nedra, p. 514. (in Russian).Google Scholar
Avkhimovich, V.I., Chibrikova, E.V., Obukhovskaya, T.G., Nazarenko, A.M., Umnova, V.T., Raskatova, L.G., Mantsurova, V.N., Loboziak, S., and Streel, M., 1993, Middle and Upper Devonian miospore zonation of eastern Europe: Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, v. 17, p. 80147.Google Scholar
Babcock, L.E., Merriam, D.F., and West, R.R., 2000, Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian–Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus : Lethaia, v. 33, p. 129141.Google Scholar
Botton, M.L., and Haskin, H.H., 1984, Distribution and feeding of the horseshoe crab, Limulus polyphemus, on the continental shelf off New Jersey: Fishery Bulletin, v. 82, p. 383389.Google Scholar
Braddy, S.J., 2001, Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a ‘mass-moult-mate’ hypothesis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, p. 115132. doi: 10.1016/S0031-0182(01)00274-7.Google Scholar
Burmeister, H., 1843, Die Organisation der Trilobiten, aus ihren lebenden Verwandten entwickelt: Nebst systematische Uebersicht aller seither beschriebenen Arten: Berlin, G. Reimer, 148 pp.Google Scholar
Clarke, J.M., and Ruedemann, R., 1912, The Eurypterida of New York: New York State Museum Memoir, v. 14, 439 p.Google Scholar
Congreve, C.R., Falk, A.R., and Lamsdell, J.C., 2018, Biological hierarchies and the nature of extinction: Biological Reviews, v. 93, no. 2, p. 811826. doi: 10.1111/brv.12368.Google Scholar
Diener, C., 1924, Eurypterida, in Diener, C., ed., Fossilium Catalogus I: Animalia, v. Volume 25: Berlin, W. Junk, p. 126.Google Scholar
Ehlers, G.M., 1935, A new eurypterid from the Upper Devonian of Pennsylvania: Contributions from the Museum of Paleontology, University of Michigan, v. 4, p. 291295.Google Scholar
Fraipoint, J., 1889, Euryptérides nouveaux du Dévonien supérieur de Belgique (Psammites du Condroz): Annales del la Société Géologique de Belgique, v. 17, p. 5362.Google Scholar
Garetsky, R.G., Vysotsky, E.A., and Kislik, V.Z., 1984, [Potash of the Pripyat Trough]: Minsk, Nauka i Technika, 182 p. (in Russian).Google Scholar
Garetsky, R.G., Konishchev, V.S., and Aizberg, R.E., 2001, The Pripyat Trough, in Makhnach, A.S., Garetsky, R.G., and Matveyev, A.V., eds., Geology of Belarus: Minsk, National Academy of Sciences of Belarus, Institute of Geological Sciences, p. 519551.Google Scholar
Hall, J., 1884, Note on the eurypterids of the Devonian and Carboniferous formations of Pennsylvania: Report of Progress of the Second Geological Survey of Pennsylvania, v. 3, p. 2339.Google Scholar
Hall, J., and Clarke, J.M., 1888, Trilobites and other Crustacea of the Oriskany, Upper Helderberg, Hamilton, Portage, Chemung and Catskill groups: New York Geological Survey, Paleontology, v. 7, p. 1236.Google Scholar
Heymons, R., 1901, Die Entwicklungsgeschichte der Scolopender: Zoologica, v. 13, p. 1244.Google Scholar
Jordan, H., and von Meyer, H., 1854, Ueber die Crustaceen der Steinkohlenformation von Saarbrücken: Palaeontographica, v. 4, p. 115.Google Scholar
Kjellesvig-Waering, E.N., 1966, A revision of the of the families and genera of the Stylonuracea (Eurypterida): Fieldiana Geology, v. 14, p. 169197.Google Scholar
Konishchev, V.S., Garetsky, R.G., and Aizberg, R.E., 2001, History of the tectonic development. Hercynian phase, in Makhnach, A.S., Garetsky, R.G., and Matveyev, A.V., eds., Geology of Belarus: Minsk, National Academy of Sciences of Belarus, Institute of Geological Sciences, p. 591629.Google Scholar
Kruchek, S.A., Makhnach, A.S., Golubtsov, V.K., and Obukhovskaya, T.G., 2001, The Devonian system, in Makhnach, A.S., Garetsky, R.G., and Matveyev, A.V., eds., Geology of Belarus: Minsk, National Academy of Sciences of Belarus, Institute of Geological Sciences, p. 186239 (in Russian.)Google Scholar
Lamsdell, J.C., 2011, The eurypterid Stoermeropterus conicus from the lower Silurian of the Pentland Hills, Scotland: Monograph of the Palaeontographical Society, v. 165, p. 184.Google Scholar
Lamsdell, J.C., 2013, Redescription of Drepanopterus pentlandicus Laurie, 1892, the earliest known mycteropoid (Chelicerata: Eurypterida) from the early Silurian (Llandovery) of the Pentland Hills, Scotland: Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 103, p. 77103. doi: 10.1017/S1755691012000072.Google Scholar
Lamsdell, J.C., and Braddy, S.J., 2010, Copeʼs Rule and Romerʼs theory: Patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates: Biology Letters, v. 6, p. 265269. doi: 10.1098/rsbl.2009.0700.Google Scholar
Lamsdell, J.C., and Selden, P.A., 2017, From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis: Evolution, v. 71, p. 95110. doi: 10.1111/evo.13106.Google Scholar
Lamsdell, J.C., Braddy, S.J., and Tetlie, O.E., 2009, Redescription of Drepanopterus abonensis (Chelicerata: Eurypterida: Stylonurina) from the late Devonian of Portishead, UK: Palaeontology, v. 52, p. 11131139. doi: 10.1111/j.1475-4983.2009.00902.x.Google Scholar
Lamsdell, J.C., Braddy, S.J., and Tetlie, O.E., 2010a, The systematics and phylogeny of the Stylonurina (Arthropoda: Chelicerata: Eurypterida): Journal of Systematic Palaeontology, v. 8, p. 4961. doi: 10.1080/14772011003603564.Google Scholar
Lamsdell, J.C., Braddy, S.J., Loeffler, E.J., and Dineley, D.L., 2010b, Early Devonian stylonurine eurypterids from Arctic Canada: Canadian Journal of Earth Sciences, v. 47, p. 14051415. doi: 10.1139/E10-053.Google Scholar
Lamsdell, J.C., Briggs, D.E.G., Liu, H.P., Witzke, B.J., and Mckay, R.M., 2015, The oldest described eurypterid: A giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstatte of Iowa: BMC Evolutionary Biology, v. 15, p. 169 doi: 10.1186/s12862-015-0443-9.Google Scholar
Lamsdell, J.C., Congreve, C.R., Hopkins, M.J., Krug, A.Z., and Patzkowsky, M.E., 2017, Phylogenetic paleoecology: Tree-thinking and ecology in deep time: Trends in Ecology & Evolution, v. 32, p. 452463. doi: 10.1016/j.tree.2017.03.002.Google Scholar
Lomax, D.R., and Racay, C.A., 2012, A long mortichnial trackway of Mesolimulus walchi from the Upper Jurassic Solnhofen Lithographic Limestone near Wintershof, Germany: Ichnos, v. 19, p. 175183. doi: 10.1080/10420940.2012.702704.Google Scholar
McCoy, V.E., and Brandt, D.S., 2009, Scorpion taphonomy: Criteria for distinguishing fossil scorpion molts and carcasses: Journal of Arachnology, v. 37, p. 312320. doi: 10.1636/SH09-07.1.Google Scholar
McCoy, V.E., Lamsdell, J.C., Poschmann, M., Anderson, R.P., and Briggs, D.E.G., 2015, All the better to see you with: Eyes and claws reveal the evolution of divergent ecological roles in giant pterygotid eurypterids: Biology Letters, v. 11, p. 20150564 doi: 10.1098/rsbl.2015.0564.Google Scholar
McMahon, S., Anderson, R.P., Saupe, E.E., and Briggs, D.E.G., 2016, Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils: Geology, v. 44, p. 867870. doi: 10.1130/G38454.1.Google Scholar
Neves, R., 1958, Upper Carboniferous plant spore assemblages from the Gastriocers subcrenatum horizon, North Staffordshire: Geological Magazine, v. 95, p. 119.Google Scholar
Obukhovskaya, T.G., Kruchek, S.A., Pushkin, V.I., Nekryata, N.S., Plax, D.P., Sachenko, T.P., Obukhovskaya, V.Y., and Antipenko, S.V., 2010, The Devonian system/Stratigraphic chart of Precambrian and Phanerozoic deposits of Belarus: Explanatory note: Minsk, State Enterprise ‘BelNIGRI,’ p. 98114 (in Russian).Google Scholar
Page, D., 1856, Advanced Text-book of Geology: Edinburgh, Blackwood, 326 p.Google Scholar
Plax, D.P., and Barbikov, D.V., 2012, Eurypterid (Chelicerata, Eurypterida) findings in Famennian saliniferous deposits of the Devonian of the Pripyat Trough (Starobin potassium salt deposit, Belarus): Terra Nostra, Centenary Meeting of the Paläontologische Gesellschaft, Programme, Abstracts, and Field Guides, Museum für Naturkunde, Berlin, v. 3, p. 135.Google Scholar
Plax, D.P., and Barbikov, D.V., 2013, Eurypterids (Chelicerata, Eurypterida) from the Famennian saliniferous deposits of the Devonian of the Pripyat trough: Science education, manufacture, economy: Minsk, Belarusian National Technical University, v. 3, p. 67.Google Scholar
Plax, D.P., Kruchek, S.A., and Barbikov, D.V., 2009, Eurypterid (Chelicerata, Eurypterida) findings in Famennian saliniferous deposits of the Devonian of Belarus: Lithosphere, v. 1, p. 2938 (in Russian).Google Scholar
Plotnick, R.E., 1983, Patterns in the evolution of the eurypterids [Ph.D. thesis]: Chicago, University of Chicago, 411 p.Google Scholar
Plotnick, R.E., 1999, Habitat of Llandoverian–Lochkovian eurypterids, in Boucot, A.J., and Lawson, J.D., eds., Paleocommunities, A Case Study from the Silurian and Lower Devonian: Cambridge, UK, Cambridge University Press, p. 106131.Google Scholar
Poschmann, M., Schoenemann, B., and McCoy, V.E., 2016, Telltale eyes: The lateral visual systems of Rhenish lower Devonian eurypterids (Arthropoda, Chelicerata) and their palaeobiological implications: Palaeontology, v. 59, p. 295304. doi: 10.1111/pala.12228.Google Scholar
Ruedemann, R., 1921, A new eurypterid from the Devonian of New York: New York State Museum Bulletin, v. 227–228, p. 8892.Google Scholar
Rzhonsnitskaya, M.A., 2000, Devonian stage boundaries on the East European (Russian) Platform: Courier Forschungsinstitut Senckenberg, v. 225, p. 227237.Google Scholar
Seki, H., and Taga, N., 1963, Microbiological studies on the decomposition of chitin in marine environment, II, Influence of some environmental factors on the growth and activity of marine chitinoclastic bacteria: Journal of the Oceanographical Society of Japan, v. 19, p. 109111.Google Scholar
Selden, P.A., 1981, Functional morphology of the prosoma of Baltoeurypterus tetragonophthalmus (Fischer) (Chelicerata: Eurypterida): Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 72, p. 948.Google Scholar
Staplin, F.L., 1960, Upper Mississippian plant spores from the Golata Formation, Alberta, Canada: Palaeontographica, Abteilung B, v. 107, p. 140.Google Scholar
Stigall, A.L., 2010, Invasive species and biodiversity crises: Testing the link in the Late Devonian: PLOS ONE, v. 5, p. e15584 doi: 10.1371.journal.pone.0015584.Google Scholar
Stigall, A.L., 2012, Speciation collapse and invasive species dynamics during the Late Devonian ‘mass extinction’: GSA Today, v. 22, p. 49. doi: 10.1139/g128a.1.Google Scholar
Størmer, L., 1936, Eurypteriden aus dem Rheinischen Unterdevon: Abhandlungen der Preußischen Geologischen Landesanstalt, Neue Folge, v. 175, p. 174.Google Scholar
Størmer, L., 1952, Phylogeny and taxonomy of fossil horseshoe crabs: Journal of Paleontology, v. 26, p. 630639.Google Scholar
Tetlie, O.E., 2007, Distribution and dispersal history of Eurypterida (Chelicerata): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 557574. doi: 10.1016/j.palaeo.2007.05.011.Google Scholar
Tetlie, O.E., 2008, Hallipterus excelsior, a stylonurid (Chelicerata: Eurypterida) from the Late Devonian Catskill Delta complex, and its phylogenetic position in the Hardieopteridae: Bulletin of the Peabody Museum of Natural History, v. 49, p. 1930. doi: 10.3374/0079-032X(2008)49[19:HEASCE]2.0.C);2.Google Scholar
Tetlie, O.E., and Poschmann, M., 2008, Phylogeny and palaeoecology of the Adelophthalmoidea (Arthropoda; Chelicerata; Eurypterida): Journal of Systematic Palaeontology, v. 6, p. 237249. doi: 10.1017/S1477201907002416.Google Scholar
Tetlie, O.E., Braddy, S.J., Butler, P.D., and Briggs, D.E.G., 2004, A new eurypterid (Chelicerata: Eurypterida) from the Upper Devonian Gogo Formation of Western Australia, with a review of the Rhenopteridae: Palaeontology, v. 47, p. 801809. doi: 10.1111/j.0031-0239.2004.00390.x.Google Scholar
Tetlie, O.E., Brandt, D.S., and Briggs, D.E.G., 2008, Ecdysis in sea scorpions (Chelicerata: Eurypterida): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 265, p. 182194. doi: 10.1016/j.palaeo.2008.05.008.Google Scholar
Tollerton, V.P. Jr., 1989, Morphology, taxonomy, and classification of the order Eurypterida Burmeister, 1843: Journal of Paleontology, v. 63, p. 642657.Google Scholar
von Siebold, C.T., and Stannius, H., 1848, Lehrbuch der Vergleichenden Anatomie: Berlin, Verlag von Veit & Comp., 679 p. doi: 10.5962,bhl.title.10707.Google Scholar
Vrazo, M.B., and Braddy, S.J., 2011, Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 311, p. 6373. doi: 10.1016/j.palaeo.2011.07.031.Google Scholar
Vrazo, M.B., Brett, C.E., and Ciurca, S.J. Jr., 2016, Buried or brined? Eurypterids and evaporites in the Silurian Appalachian basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 444, p. 4859. doi: 10.1016/j.palaeo.2015.12.011.Google Scholar
Vrazo, M.B., Brett, C.E., and Ciurca, S.J. Jr., 2017, Paleoecological and stratigraphic controls on eurypterid Lagerstätten: A model for preservation in the mid-Paleozoic: Paleobiology, v. 43, p. 383406. doi: 10.1017/pab.2016.52.Google Scholar
Vysotsky, E.A., Garetsky, R.G., and Kislik, V.Z., 1988, [Potassium-bearing Basins of the World]: Minsk, Nauka i Technika, 387 p. (in Russian).Google Scholar
Warren, J.K., 1997, Evaporites, brines and base metals: Fluids, flow and ‘the evaporite that was’: Australian Journal of Earth Sciences, v. 44, p. 149183.Google Scholar
Waterston, C.D., 1962, Pagea sturrocki gen. et sp. nov., a new eurypterid from the Old Red Sandstone of Scotland: Palaeontology, v. 5, p. 137148.Google Scholar
Waterston, C.D., 1979, Problems of functional morphology and classification in stylonuroid eurypterids (Chelicerata, Merostomata), with observations on the Scottish Silurian Stylonuroidea: Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 70, p. 251322.Google Scholar
Waterston, C.D., 1985, Cyrtoctenus witterbergensis sp. nov. (Chelicerata: Eurypterida), a large sweep-feeder from the Carboniferous of South Africa: Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 76, p. 339358.Google Scholar
Woodward, H.P., 1872, The fossil Merostomata, Part IV (Stylonurus, Eurypterus, Hemiaspis): Palaeontographical Society Monograph, v. 26, p. 121180.Google Scholar