Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-21T17:05:32.345Z Has data issue: false hasContentIssue false

Growth and ecology of a multi-branched Ediacaran rangeomorph from the Mistaken Point assemblage, Newfoundland

Published online by Cambridge University Press:  14 July 2015

Emily L. Bamforth
1Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada K7L 3N6,
Guy M. Narbonne
1Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada K7L 3N6,
Michael M. Anderson
1Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario, Canada K7L 3N6,


Pectinifrons abyssalis new genus and species is an early Ediacaran (ca. 565 Ma) rangeomorph from the Avalon Peninsula of Newfoundland. It is known from more than 200 specimens from the Mistaken Point and Trepassey formations, and is typically preserved as a comb-shaped ridge on the top of mudstone beds beneath volcanic ashfall tuffs. Morphologic and taphonomic features suggest that the living organism consisted of two parallel series of soft rangeomorph fronds, alternately branching in an opposite arrangement from an elongate, tubular pedicle rod. the pedicle rod and the struts that represent the central stalks of the fronds were originally composed of resistant material that did not decompose until after lithification of the overlying ash bed. the fronds themselves were originally composed of a soft, non-resistant material that readily degraded, resulting in their extremely rare preservation as impressions on the bedding surface. Biometric analysis implies that Pectinifrons grew primarily by strut/frond addition, with later inflation of these elements. Pectinifrons is one of the first rangeomorph taxa to display evidence of possible age cohorts comparable to those observed in modern macrobenthic organisms.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anderson, M. M. 1978. Ediacaran Fauna, p. 146149. In McGraw-Hill Yearbook of Science and Technology. McGraw-Hill Inc., New York.Google Scholar
Anderson, M. M. and Misra, S. B. 1968. Fossils found in the Pre-Cambrian Conception Group of southeastern Newfoundland. Nature, 220:680681.CrossRefGoogle Scholar
Anderson, M. M. and Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's groups (late Precambrian), Avalon Peninsula, Newfoundland. Third American Palaeontological Convention Proceedings, Volume 1, p. 18.Google Scholar
Antcliffe, J. B. and Brasier, M. D. 2007. Charnia and sea pens are poles apart. Journal of the Geological Society, 164:4951.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50:122.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York Sate Museum and Geological Survey Bulletin 463.Google Scholar
Bottjer, D. J. and Clapham, M. E. 2006. Evolutionary palaeoecology of Ediacaran benthic marine animals. In Xiao, S. and Kaufman, A. J. (eds.), Topics of Geobiology, Volume 27, Neoproterozoic Geobiology and Paleobiology, p. 91114. Springer Netherlands.CrossRefGoogle Scholar
Bowring, S. A., Myrow, P., Landing, E., and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic constraints and the rise of metazoans. Abstract 13045. NASA Astrobiology Institute (NAI) general meeting, special section IV: Early biosphere evolution, p. 113114.Google Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Buick, D. V. and Ivany, L. C. 2004. 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology, 32:921924.CrossRefGoogle Scholar
Burkovski, I. V., Udalov, A. A., and Stoljarov, A. P. 1997. The importance of juveniles in structuring a littoral macrobenthic community. Hydrobiologia, 355:19.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Clapham, M. E. and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C., and Anderson, M. A. 2004. Thectardis avalonensis: A new Ediacaran fossil from the Mistaken Point biota, Newfoundland. Journal of Paleontology, 78:10311036.2.0.CO;2>CrossRefGoogle Scholar
Conway Morris, S. 1989. Southeastern Newfoundland and adjacent areas, p. 739. In Cowie, J. W. and Brasier, M. D. (eds.), The Precambrian-Cambrian Boundary. Clarendon Press, Oxford.Google Scholar
Diaz, M. A., Silva, M. C., and Forner, J. P. 2006. Effect of immersion time of clutch on spatfall of the scallop Argopecten purpuratus (Lamarck 1819) in the Marine Reserve at La Riconada, Antofagasta, Chile. Aquaculture International, 14:267283.CrossRefGoogle Scholar
Doherty, P. J. 1979. A demographic study of a subtidal population of the New Zealand articulate brachiopod Terebratella inconspicua. Marine Biology, 52:331342.CrossRefGoogle Scholar
Fedonkin, M. A. and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Feldman, H. R. 2005. Paleoecology, taphonomy, and biogeography of a Coenothyris community (Brachiopoda, Terebratulida) from the Triassic (Upper Anisian-Lower Ladinian) of Israel. American Museum Novitates, 3479:120.CrossRefGoogle Scholar
Franz, D. R. 1973. The ecology and reproduction of the marine bivalve Mysella planulata (Erycinacea). Biological Bulletin, 144:93106.CrossRefGoogle ScholarPubMed
Gehling, J. G. 1987. Earliest known echinoderm-a new Ediacaran fossil from the Pound Subgroup, South Australia. Alcheringa, 11:299314.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran roots to a metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacaran fauna, Pound Subgroup, South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Gehling, J. G., Drosser, M. L., Jensen, S., and Runnegar, B. N. 2006. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development, Proceedings of a symposium honouring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43:427456.CrossRefGoogle Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.CrossRefGoogle Scholar
Grady, S. P., Rutecki, D., Carmichael, R., and Valiela, I. 2001. Age structure of the Pleasant Bay population of Crepidula fornicata: a possible tool for estimating horseshoe crab age. Biological Bulletin, 201:296297.CrossRefGoogle ScholarPubMed
Grazhdankin, D. and Seilacher, A. 2005. A re-examination of the Nama-type Vendían organism Rangea schneiderhoehni. Geology Magazine, 142:571582.CrossRefGoogle Scholar
Gürich, G. 1930. Über den Kuibis-Quarzit in Südwestafrika: Zeitschrift der Deutschen Geologischen Gesellschaft, 82:637.Google Scholar
Hughes, T. P. 1990. Recruitment limitations, mortality, and population regulation in open systems: a case study. Ecology, 71:12120.CrossRefGoogle Scholar
Ichaso, A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences, 44:2541.CrossRefGoogle Scholar
Jenkins, J. F. 1985. The enigmatic Ediacaran (late Precambrian genus) Rangea and related forms. Paleobiology, 11:336355.CrossRefGoogle Scholar
Jenkins, J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. New York, NY/London, UK: PlenumCrossRefGoogle Scholar
Jones, J. R., Cammeron, B., and Rollins, H. B. 1989. Paleoecological implications of cohort survivorship for Mya arenaria in Massachusetts estuarine waters. Palaios, 4:468474.CrossRefGoogle Scholar
Knoll, A. E. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, New Jersey, 277 p.Google Scholar
Kohyama, T., Suzuki, E., Partomihardjo, T., Yamada, T., and Kubo, T. 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91:797806.CrossRefGoogle Scholar
Kowalewski, M. 1996. Taphonomy of a Living Fossil: The lingulide brachiopod Glottidia palmeri Dall from Baja California, Mexico. Palaios, 11:244265.CrossRefGoogle Scholar
Landing, E., Narbonne, G. M., Myrow, P. M., Benus, A. P., and Anderson, M. M. 1988. Faunas and depositional environments of the Upper Precambrian through lower Cambrian, southeastern Newfoundland (field trip road log), p. 2732. In Landing, E., Narbonne, G. M., and Myrow, P. M. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey, Bulletin 463: 18-52.Google Scholar
Landing, E., Narbonne, G. M., and Anderson, M. M. 2004. Faunas and depositional environments of the Upper Precambrian through Lower Cambrian, southeastern Newfoundland. Bulletin of the New York State Museum, 463:1852.Google Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of the Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications, 286:237257.Google Scholar
McArthur, V. E. 1998. Post-settlement mortality of juvenile lagoonal cockles (Cerastoderma glaucum?: Mollusca: Bivalvia). Marine Biology, 132:117122.CrossRefGoogle Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from southeastern Newfoundland. Geological Society of America Bulletin, 80:21332140.CrossRefGoogle Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of the late Precambrian coelenterate-bearing rock, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.CrossRefGoogle Scholar
Misra, S. B. 1981. Depositional environment of the late Precambrian fossil bearing rocks of southeastern Newfoundland, Canada. Journal of the Geological Society of India, 22:375382.Google Scholar
Myrow, P. M. 1995. Neoproterozoic rocks of the Newfoundland Avalon zone. Precambrian Research, 7:123136.CrossRefGoogle Scholar
Narbonne, G. M. 1998. The Ediacaran Biota: A terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8:26.Google Scholar
Narbonne, G. M. 2004. Modular construction of Early Ediacaran complex life forms. Science, 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth Planet Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from Southern Africa. Journal of Paleontology, 71:953967.CrossRefGoogle ScholarPubMed
Narbonne, G. M., Dalrymple, R. W., Gehling, J. G., Wood, D. A., Clapham, M. E., and Sala, R. A. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Field Trip B5, Geological Association of Canada—Mineralogical Association of Canada joint annual meeting, St. John's, Newfoundland, 98 p.Google Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology, 31:2730.2.0.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., Dalrymple, R. W., Laflamme, M., Gehling, J. G., and Boyce, W. D. 2005. Mistaken Point Biota and the Cambrian of the Avalon. Field Trip Q6, North American Palaeontological Convention, Halifax, NS, 100 p.Google Scholar
Narbonne, G. M., Gehling, J. G., and Vickers-Rich, P. 2007. The misty coasts of Newfoundland, p. 5368. In Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. (eds.), The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins Press, Baltimore, 344 p.Google Scholar
Niklas, K. J. 1992. Plant Biomechanics: An Engineering Approach to Plant Form and Function. Pg. 27. University of Chicago Press, 622 p.Google Scholar
O'Brien, S. J., King, A. F., and Hofmann, H. J. 2006. Lithostratigraphic and biostatigraphic studies in the eastern Bonavista Peninsula: an update. Current Research, Newfoundland and Labrador Department of Natural Resources Geological Report, 06-1:257263.Google Scholar
Pflug, H. D. 1972. Zur fauna der Nama-Schichten in Südwest-Afrika, III. Erniettomorpha, Bau und systematische Zugehörigkeit. Palaeontograhica, A139:134170Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Schwarz, S., Ikejiri, T., Breithaupt, B. H., Sander, P. M., and Klein, N. 2007. A nearly complete skeleton of an early juvenile diplodocid (Dinosauria: Sauropoda) from the Lower Morrison Formation (Late Jurassic) of north central Wyoming and its implications for early ontogeny and pneumaticity in sauropods. Historical Biology, 19:225253.CrossRefGoogle Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:355368.Google Scholar
Waggoner, B. 1999. Biogeographical analysis of the Ediacara biota: A problem with palaeotectonic reconstructions. Paleobiology, 25:440458.CrossRefGoogle Scholar
Waggoner, B. 2003. The Ediacaran Biotas in space and time. Integrative and Comparative Biology, 43:104113CrossRefGoogle ScholarPubMed
Williams, H. and King, A. F. 1979. Trepassey Map Area, Newfoundland: Geological Survey of Canada Memoir, 389:124.Google Scholar
Witbaard, R. and Bergman, M. J. N. 2002. The distribution and population structure of the bivalve Arctica islandica L. in the North Sea: what possible factors are involved? Journal of Sea Research, 50:1125.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Palaeoenviromental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, Southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:1375–139.CrossRefGoogle Scholar