Skip to main content Accessibility help
×
Home

Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement

  • Margaret A. Gooding (a1) (a2), Jim L. Atkinson (a1), Ian J. H. Duncan (a1), Lee Niel (a3) and Anna K. Shoveller (a1) (a2)...

Abstract

The effects of dietary carbohydrate and fat on feline health are not well understood. The effects of feeding diets moderately high in fat (HF; n 10; 30 % fat, 26 % carbohydrate as fed) or carbohydrate (HC; n 10; 11 % fat, 47 % carbohydrate), for 84 d, were investigated in healthy, adult cats (3·5 (sd 0·5) years). Data on indirect calorimetry, blood biomarkers, activity, play and cognition were collected at baseline, and at intervals throughout the study. Body composition was measured by dual-energy X-ray absorptiometry at baseline and on day 85. There were no significant main effects of diet on body weight and composition. When data were analysed over study day within diet, cats fed HF diets experienced a significant increase in body fat (P = 0·001) and body weight (P = 0·043) in contrast to cats consuming the HC diet that experienced no change in body fat or body weight (P = 0·762) throughout the study. Overall, energy expenditure was similar between diets (P = 0·356 (fasted), P = 0·086 (postprandial)) and respiratory quotient declined with exposure to the HF diet and increased with exposure to the HC diet (P < 0·001; fasted and postprandial). There was no difference in insulin sensitivity as an overall effect of diet (P = 0·266). Activity declined from baseline with exposure to both diets (HC: P = 0·002; HF: P = 0·01) but was not different between diets (P = 0·247). There was no effect of diet on play (P = 0·387) and cats consuming either the HF or HC diet did not successfully learn the cognitive test. Overall, cats adapt to dietary macronutrient content, and the implications of feeding HC and HF diets on risk for adiposity as driven by metabolic and behavioural mechanisms are discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution license .

Corresponding author

* Corresponding author: Anna Kate Shoveller, email kate.shoveller@effem.com

References

Hide All
1. Ward, E, Budsberg, S, Bartages, J, et al. (editors) (2012) Big Pets Get Bigger: Latest Survey Shows US Dog and Cat Obesity Epidemic Expanding. Calabash, NC: Association for Pet Obesity Prevention.
2. Lund, EM, Armstrong, PJ, Kirk, CA, et al. (2005) Prevalence and risk factors for obesity in adult cats from private US veterinary practices. Intern J Appl Res Vet Med 3, 388396.
3. Slingerland, LI, Vasilova, VV, Plantinga, EA, et al. (2009) Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors for the development of feline type 2 diabetes mellitus. Vet J 179, 247253.
4. Theiss, S, Becskei, C, Tomsa, K, et al. (2004) Effects of high carbohydrate and high fat diet on plasma metabolite levels and on IV glucose tolerance test in intact and neutered male cats. J Felin Med Surg 6, 207218.
5. Backus, RC, Cave, NJ & Keisler, DH (2007) Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. Br J Nutr 98, 641650.
6. Slingerland, LI, Robben, JH, van Haeften, TW, et al. (2007) Insulin sensitivity and β-cell function in healthy cats: assessment with the use of the hyperglycemic glucose clamp. Horm Metab Res 39, 341346.
7. Stubbs, RJ, Murgatroyd, PR, Goldberg, GR, et al. (1993) Carbohydrate balance and the regulation of d-to-d food-intake in humans. Am J Clin Nutr 57, 897903.
8. Watanabe, H, Rose, MT & Hisashi, A (2011) Role of peripheral serotonin in glucose and lipid metabolism. Curr Opin Lipidol 22, 186191.
9. Gonzales, MM, Tarumi, T, Miles, SC, et al. (2010) Insulin sensitivity as a mediator of the relationship between BMI and working memory-related brain activation. Obesity 18, 21312137.
10. Gooding, MA, Duncan, IJH, Atkinson, JA, et al. (2012) Development and validation of a behavioural acclimation protocol for cats to respiration chambers used for indirect calorimetry studies. J Appl Anim Welf Sci 15, 144162.
11. National Research, Council (2006) Nutrient Requirements of Dogs and Cats, pp. 146150. Washington, DC: National Academies Press.
12. Mehta, S, Kalsi, HK, Nain, CK, et al. (1977) Energy metabolism of brain in human protein–calorie malnutrition. Pediatr Res 11, 209293.
13. AOAC (1995) Official Methods of Analysis, 16th ed. Arlington, VA: AOAC International.
14. Center, SA, Warner, KL, Randolph, JF, et al. (2011) Resting energy expenditure per lean body mass determined by indirect calorimetry and bioelectric impedance analysis in cats. J Vet Intern Med 25, 13411350.
15. Weir, JBV (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
16. Gooding, MA, Flickinger, EA, Atkinson, JA, et al. (2014) Effects of high fat and high carbohydrate diets on fat and carbohydrate oxidation and plasma metabolites in healthy cats. J Anim Physiol Anim Nutr (Berl) 98, 596607.
17. Widowski TM & Duncan IJH (2000) Working for a dustbath: are hens increasing pleasure rather than reducing suffering? App Anim Behav Sci 68, 3953.
18. SAS Institute Inc. (2008) SAS/STAT® Software. Cary, NC: SAS Institute Inc.
19. Coradini, M, Rand, JS, Morton, JM, et al. (2011) Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain. Br J Nutr 106, Suppl. 1, S64S77.
20. Castrillo, C, Hervera, M & Baucells, MD (2009) Methods for predicting the energy value of pet foods. R Bras Zootec 38, 114.
21. Nguyen, PG, Dumon, HJ, Siliart, BS, et al. (2004) Effects of dietary fat and energy on body weight and composition after gonadectomy in cats. Am J Vet Res 65, 17081713.
22. Benton, D (2002) Carbohydrate ingestion, blood glucose and mood. Neurosci Biobehav Rev 26, 293308.
23. Wells, AS, Read, NW, Uvnas-Moberg, K, et al. (1997) Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav 61, 679686.
24. Figlewicz, DP, Szot, P, Isreal, PA, et al. (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus caeruleus. Brain Res 602, 161164.
25. Stacher, G, Bauer, H & Steinringer, H (1979) Cholecystokinin decreases appetite and activation evoked by stimuli arising from the preparation of a meal in man. Physiol Behav 23, 325331.
26. Kapas, L, Obal, F & Kruegar, JM (1993) Humoral regulation of sleep. Int Rev Neurobiol 35, 131160.
27. Wells, AS, Read, NW & Craig, A (1995) Influences of dietary and intraduodenal lipid on alertness, mood and sustained concentration. Br J Nutr 74, 115123.
28. Hall SL & Bradshaw JWS (1998) The influence of hunger on object play by the adult domestic cat. Appl Anim Behav Sci 58, 143150.
29. Shoveller, AK, Minikhiem, DL, Carnagey, K, et al. (2014) Low level of supplemental dietary l-carnitine increases energy expenditure in overweight, but not lean, cats fed a moderate energy density diet to maintain body weight. Intern J Appl Res Vet Med 12, 3343.
30. Bellise, F (2004) Effects of diet on behaviour and cognition in children. Br J Nutr 92, Suppl. 2, S227S232.

Keywords

Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement

  • Margaret A. Gooding (a1) (a2), Jim L. Atkinson (a1), Ian J. H. Duncan (a1), Lee Niel (a3) and Anna K. Shoveller (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed