Skip to main content Accessibility help
×
Home

Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity

  • Takahiko Fujikawa (a1) (a2), Tetsuya Hirata (a3), Shingo Hosoo (a3), Kenji Nakajima (a3), Atsunori Wada (a3), Yutaka Yurugi (a4), Hideaki Soya (a5), Takashi Matsui (a5), Akihiko Yamaguchi (a6), Masato Ogata (a2) and Sansei Nishibe (a7)...

Abstract

Eucommia leaves (Eucommia ulmoides Oliver) contain chlorogenic acid (a caffeic acid derivative) and geniposidic acid and asperuloside (ASP), iridoid glucosides used in beverages. We used a metabolic syndrome rat model, produced by feeding a 35 % high-fat diet (HFD), to examine potential anti-obesity and anti-metabolic syndrome effects and mechanisms of chronic administration of ASP. These effects were compared with Eucommia leaf extract (ELE), the positive control, which exhibits anti-obesity effects. A total of six rats were studied for 3 months in five groups. ASP suppressed body weight, visceral fat weight, food intake and circulating levels of glucose, insulin and lipids, and increased the plasma adiponectin level in rats on a HFD. These effects are similar to those of ELE, except for the influence on the plasma glucose level. RT–PCR studies showed that ASP (like ELE with known anti-obesity effects) diminished isocitrate dehydrogenase 3α, NADH dehydrogenase flavoprotein 1 (Comp I) mRNA and fatty acid synthase levels (white adipose tissue), increased carnitine palmitoyltransferase 1α and acyl-CoA dehydrogenase, very-long-chain mRNA levels (liver), and increased Glut4, citrate synthase, isocitrate dehydrogenase 3α, succinyl CoA synthase, peroxisomal 3-ketoacyl-CoA thiolase, dihydrolipoamide succinyl transferase and succinate dehydrogenase mRNA levels (skeletal muscle) under HFD conditions. Interestingly, ASP administration resulted in significantly increased mRNA levels of uncoupling protein 1 (UCP1) in the brown adipose tissue of HFD-fed rats; ELE did not affect the expression of UCP1. The increased expression of UCP1 may be negated by many ingredients other than ASP in the ELE. These findings suggest that chronic administration of ASP stimulates anti-obesity and anti-metabolic syndrome activity in HFD-fed rats across several organs, similar to ELE administration; thus, ASP may be an important ingredient of ELE.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Dr T. Fujikawa, fax +81-59-368-1271, email fujikawa@suzuka-u.ac.jp

References

Hide All
1.Matsuzawa, Y (2005) Adiponectin identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 6, 714.
2.Bray, GA (2008) Lifestyle and pharmacological approaches to weight loss: efficacy and safety. J Clin Endocrinol Metab 93, S81S88. [Review. Erratum in: J Clin Endocrinol Metab (2009) 94, 324.]
3.Fujikawa, T, Hirata, T, Wada, A et al. (2010) Chronic administration of Eucommia leaf stimulates metabolic function of rats across several organs. Br J Nutr 104, 18681877.
4.Jiangsu New Medical College (editor) (1997) Chinese Materia Medica Dictionary, p. 1031. Shanghai: Shanghai Science and Technology Publishing House.
5.Nakamura, T, Nakazawa, Y, Onizuka, S, et al. (1997) Studies on the constituents of Eucommia ulmoides iridoids from the leaves. Nat Med 51, 275277.
6.Li, H, Chen, B & Yao, S (2005) Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv. Ultrason Sonochem 12, 295300.
7.Qin, ZD, Wu, YZ, Yu, ZQ, et al. (1997) Studies on the Eucommia cortex and leaves. West-North Univ J 7, 6471.
8.Guizhou Province Institute for Drug Control and Guizhou Province Chinese Medicine Research Laboratories (1978) A hypertensive clinical study on Eucommia leaves. Chin Med Herbs Res 8, 5963.
9.Guizhou Province Hypotensive Clinical Committee Institute for Drug Control and Chinese Medicine Research Laboratories (1978) A clinical study on replacement of Eucommia cortex with Eucommia leaves. New Med J 10, 3032.
10.Liu, D & Li, CW, (1980) Clinical evaluation of Eucommia cortex and leaves by 102 type of hypertension. Shanxi Chin Med 1, 2730.
11.Shanxi Province Eucommia Clinical Review Committee (1995) Replacement of Eucommia Cortex with Eucommia Leaves for Hypertension Treatment. A Clinical Review with 621 Cases, pp. 1954. Xian: Shanxi Eucommia Development Company.
12.Yamaguchi, Y, Kawamura, N, Tsuboi, T, et al. (2007) Effect of Eucommia ulmoides leaf extract on blood pressure. Int Symp Eucommia ulmoides 1, 5562.
13.Tagawa, C, Nakazawa, Y, Tagashira, E, et al. (2005) Effect of Eucommia leaf (Eucommia ulmoides Oliver; Du-Zhong yge) extract on blood pressure(2). Nat Med 59, 117120.
14.Ohmori, R, Iwamoto, T, Tago, M, et al. (2005) Antioxidant activity of various teas against free radicals and LDL oxidation. Lipids 40, 849853.
15.Yang, J, Kato, K, Noguchi, K, et al. (2003) Tochu (Eucommia ulmoides) leaf extract prevents ammonia and vitamin C deficiency induced gastric mucosal injury. Life Sci 73, 32453256.
16.Fujikawa, T, Tsuboi, T, Kawamura, N, et al. (2007) Eucommia ulmoides Oliver as a prophylactic for restraint stress in water-induced gastric erosion in rats. Int Symp Eucommia ulmoides 1, 6771.
17.Ando, C, Kobayashi, T, Tsukamoto, S, et al. (2007) Antiobesity effects of Eucommia ulmoides leaves. Int Symp Eucommia ulmoides 1, 6366.
18.Metori, K, Ohashi, S, Takahashi, S, et al. (1994) Effects of Du-Zhong leaf extract on serum and hepatic lipids in rats fed a high-fat diet. Biol Pharm Bull 17, 917920.
19.Choi, MS, Jung, UJ, Kim, HJ, et al. (2008) Du-Zhong (Eucommia ulmoides Oliver) leaf extract mediates hypolipidemic action in hamsters fed a high-fat diet. Am J Chin Med 36, 8193.
20.Hirata, T, Kobayashi, T, Wada, A, et al. (2011) Anti-obesity compounds in green leaves of Eucommia ulmoides. Bioorg Med Chem Lett 21, 17861791.
21.Kelley, DS, Nelson, GJ & Hunt, JE, (1986) Effect of prior nutritional status on the activity of lipogenic enzymes in primary monolayer cultures of rat hepatocytes. Biochem J 235, 8790.
22.Markwell, MA, McGroarty, EJ, Bieber, LL, et al. (1973) The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem 248, 34263432.
23.Lee, MK, Kim, MJ, Cho, SY, et al. (2005) Hypoglycemic effect of Du-Zhong (Eucommia ulmoides Oliv.) leaves in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 67, 2228.
24.Park, SA, Choi, MS, Kim, MJ, et al. (2006) Eucommia ulmoides Oliver leaf extract increases endogenous antioxidant activity in type 2 diabetic mice. J Med Food 9, 474479.
25.Palou, A, Pico, C, Bonet, M, et al. (1998) The uncoupling protein, thermogenin. Int J Biochem Cell Biol 30, 711.
26.Samec, S, Seydoux, J & Dulloo, AG, (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediator of thermogenesis or regulators of lipids as fuel substrate? FASEB J 12, 715724.
27.Ricquier, D, Thibault, J, Bouillaud, F, et al. (1983) Molecular approach to thermogenesis in brown adipose tissue. Cell-free translation of mRNA and characterization of the mitochondrial uncoupling protein. J Biol Chem 258, 66756677.
28.Petrovic, N, Walden, TB, Shabalina, IG, et al. (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285, 71537164.
29.Ealey, KN, EI-Sohemy, A & Archer, MC (2002) Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats. Lipids 37, 853861.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Fujikawa Supplementary Material
Table 1

 Unknown (137 KB)
137 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed