Skip to main content Accessibility help
×
Home

Sensor Configuration Optimizing in Modal Identification by Siege ant Colony Algorithm

  • S. Feng (a1), J.-Q. Jia (a1) and J.-C. Zhang (a1)

Abstract

Proper monitor planning is a vital component of structural health monitoring (SHM) project. An extremely important part of the monitor planning is the placement of sensors, usually in the form of acceleration sensors. For the placement of three-dimensional acceleration sensors, the state of practice is to select the sensor configuration by previous experiences. However, this results in a waste of many sensors. A novel method called siege ant colony algorithm (SAC) is proposed in this paper. This method is built on the previous ant colony optimization (ACO) in the direction of improving efficiency and accuracy when applied to optimal sensor placement (OSP) problems in large-scale structure monitoring. This method is applied and compared with standard approaches using the Hanjiang transmission tower.

Copyright

Corresponding author

*Corresponding author (fengshuotougao@126.com)

References

Hide All
1. Giurgiutiu, V., “Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring,” Journal of Intelligent Material Systems and Structures, 16, pp. 291305 (2005).
2. Farrar, C. R. and Worden, K., “An Introduction to Structural Health Monitoring,” Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 365, pp. 303315 (2007).
3. Chen, C. H., Shen, Y. L. and Shin, C. S., “Using Distributed Brillouin Fiber Sensor to Detect the Strain and Cracks of Steel Structures,” Journal of Mechanics, 26, pp. 547551 (2010).
4. Lynch, J. P. and Loh, K. J., “A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring,” Shock and Vibration Digest, 38, pp. 91128 (2006).
5. Wan, Z., Li, J. D., Jia, M. and Li, J. L., “Structural Health Monitoring (Shm) of Three-Dimensional Braided Composite Material Using Carbon Nanotube Thread Sensors,” Journal of Mechanics, 29, pp. 617621 (2013).
6. Raghavan, A. and Cesnik, C. E. S., “Review of Guided-Wave Structural Health Monitoring,” Shock and Vibration Digest, 39, pp. 91114 (2007).
7. Harasawa, S. and Sato, M., “Helical Buckling of Slender Beam Structures Surrounded by an Elastic Medium,” Journal of Mechanics, 31, pp. 241247 (2015).
8. Wirowski, A., Michalak, B. and Gajdzicki, M., “Dynamic Modelling of Annular Plates of Functionally Graded Structure Resting on Elastic Heterogeneous Foundation with Two Modules,” Journal of Mechanics, 31, pp. 493504 (2015).
9. Yam, L. H., Yan, Y. J. and Jiang, J. S., “Vibration-Based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification,” Composite Structures, 60, pp. 403412 (2003).
10. Salama, M., Rose, T. and Garba, J., “Optimal Placement of Excitations and Sensors for Verification of Large Dynamical Systems,” Proceedings of the 28th Structures, Structural Dynamics, and Materials Conference, pp. 68 (1987).
11. Henshell, R. and Ong, J., “Automatic Masters for Eigenvalue Economization,” Earthquake Engineering & Structural Dynamics, 3, pp. 375383 (1974).
12. Kammer, D. C., “Sensor Placement for on-Orbit Modal Identification and Correlation of Large Space Structures,” Journal of Guidance, Control, and Dynamics, 14, pp. 251259 (1991).
13. Kammer, D. C. and Tinker, M. L., “Optimal Placement of Triaxial Accelerometers for Modal Vibration Tests,” Mechanical Systems and Signal Processing, 18, pp. 2941 (2004).
14. Batou, A., “Model Updating in Structural Dynamics—Uncertainties on the Position and Orientation of Sensors and Actuators,” Journal of Sound and Vibration, 354, pp. 4764 (2015).
15. Bishop, A. N., Fidan, B., Anderson, B. D., Doğançay, K. and Pathirana, P. N., “Optimality Analysis of Sensor-Target Localization Geometries,” Automatica, 46, pp. 479492 (2010).
16. Guo, H., Zhang, L., Zhang, L. and Zhou, J., “Optimal Placement of Sensors for Structural Health Monitoring Using Improved Genetic Algorithms,” Smart Materials and Structures, 13, pp. 528 (2004).
17. Han, J.-H. and Lee, I., “Optimal Placement of Piezoelectric Sensors and Actuators for Vibration Control of a Composite Plate Using Genetic Algorithms,” Smart Materials and Structures, 8, pp. 257 (1999).
18. Herzog, R. and Riedel, I., “Sequentially Optimal Sensor Placement in Thermoelastic Models for Real Time Applications,” Optimization and Engineering, pp. 130 (2014).
19. Joshi, S. and Boyd, S., “Sensor Selection Via Convex Optimization,” IEEE Transactions on Signal Processing, 57, pp. 451462 (2009).
20. Krause, A., Singh, A. and Guestrin, C., “Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies,” The Journal of Machine Learning Research, 9, pp. 235284 (2008).
21. Dorigo, M., Maniezzo, V. and Colorni, A., “Ant System: Optimization by a Colony of Cooperating Agents,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26, pp. 2941 (1996).
22. MATLAB 2007, MathWorks, Natick, Massachusetts, U.S.
23. Carne, T. G. and Dohrmann, C., “A Modal Test Design Strategy for Model Correlation,” Proceedings-Spie The International Society For Optical Engineering, pp. 927927 (1995).
24. SAP2000, Computers and Structures, Inc., Berkeley, California, U.S.
25. Yi, T. H., Li, H. N. and Gu, M., “Optimal Sensor Placement for Structural Health Monitoring Based on Multiple Optimization Strategies,” The Structural Design of Tall and Special Buildings, 20, pp. 881900 (2011).
26. Yi, T.-H., Li, H.-N. and Gu, M., “Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm,” Mathematical Problems in Engineering, 2011, pp. 112 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed