Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T19:22:03.064Z Has data issue: false hasContentIssue false

Zn2+–Eu3+ energy transfer and calculation of Eu3+5D0 quantum efficiency

Published online by Cambridge University Press:  20 September 2011

Fa-Bin Cao*
Affiliation:
Anhui Provincial Key Laboratory for Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Maanshan, Anhui 243002, People’s Republic of China
Xing-Rong Wu*
Affiliation:
Anhui Provincial Key Laboratory for Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Maanshan, Anhui 243002, People’s Republic of China
Liao-Sha Li*
Affiliation:
Anhui Provincial Key Laboratory for Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Maanshan, Anhui 243002, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: yjsun7410@yahoo.com.cn
Get access

Abstract

With 2 mol% Zn2+ codoping and 2 mol% K+ charge compensation, the red-emitting phosphor [K0.8Y0.63Eu3+0.08Zn0.02][Mo0.2W0.8O4] was synthesized by solid-state reaction. X-ray powder diffraction spectrum indicates that it owns single phase. Through its emission spectra, excitation spectra, and fluorescence decay curves measured, its emission mechanism was mentioned and it was calculated for its partial J-O parameters and quantum efficiency of Eu3+5D0 energy level under 395 nm excitation. The results indicate that Eu3+5D07F2 red luminescence in the host can be excited by 395 nm, but its quantum efficiency can be improved in space and it has potential applications for white light-emitting diode as the red luminescent materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shionoya, M. and Yen, W.M.: Phosphor Handbook, 2nd ed. (CRC Press, 1999), p. 256.Google Scholar
2.Zhao, X., Wang, X., Chen, B., Meng, Q., Di, W., Ren, G., and Yang, Y.: Photoluminescence characteristics of Gd2Mo3O9:Eu phosphor particles by solid state reaction method. J. Rare Earths 25, 15 (2007).Google Scholar
3.Cao, F-B., Tian, Y-W., Chen, Y-J., Xiao, L-J., and Wu, Q.: Luminescence investigation of red phosphorsCa0.54Sr0.34-1.5xEu0.08Smx(MoO4)y(WO4)1-y for UV-white LED device. J. Lumin. 129, 585 (2009).CrossRefGoogle Scholar
4.Cao, F-B., Tian, Y-W., Chen, Y-J., Xiao, L-J., and Wu, Q.: Novel red phosphors for solid-state lighting: Ca0.54Sr0.34-1.5xEu0.08Smx(MoO4)y(WO4)1-y. J. Alloy. Compd. 475, 387 (2009).CrossRefGoogle Scholar
5.Yan, Y., Cao, F-B., Tian, Y-W., and Li, L-S.: Improved luminescent properties of red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor for LED application by charge compensation. J. Lumin. 131, 1140 (2011).CrossRefGoogle Scholar
6.Cao, F-B., Tian, Y-W., Chen, Y-J., Xiao, L-J., and Li, L-K.: Preparation of Sm3+–Eu3+ coactivating red-emitting phosphors and improvement of their luminescent properties by charge compensation. App. Phys. B 98, 417 (2009).CrossRefGoogle Scholar
7.Cao, F-B., Li, L-S., Tian, Y-W., Gao, Z-F., Chen, Y-J., Xiao, L-J., and Wu, X-R.: Sol-gel synthesis of red-phosphors [NaxGd1-x/3-zEuz]MoyW1-yO4 powers and luminescence properties. Opt. Mater. 33, 751 (2011).CrossRefGoogle Scholar
8.Cao, F-B., Chen, Y-J., Tian, Y-W., Xiao, L-J., and Li, L-K.: Instense red phosphors for UV light emitting diode devices. J. Nanosci. Nanotechnol. 10, 2060 (2010).CrossRefGoogle ScholarPubMed
9.Cao, F-B., Tian, Y-W., Chen, Y-J., Xiao, L-J., and Li, L-K.: A red-emitting phosphor and its luminescent properties. Appl. Spectrosc. 64, 241 (2010).CrossRefGoogle ScholarPubMed
10.Cao, F-B., Li, L-X., Tian, Y-W., Wu, X-R., Chen, Y-J. and Xiao, L.J.: Preparation of Eu3+-Y3+ coactivating Na+ based red-emitting luminous materials for light-emitting diodes and investigation of its characteristics. Appl. Spectrosc. 64, 1298 (2010).CrossRefGoogle ScholarPubMed
11.Pires, A.M. and Davolos, M.R.: Luminescence of europium(III) and manganese(II) in barium and zinc orthosilicate. Chem. Mater. 13, 21 (2001).CrossRefGoogle Scholar
12.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
13.Sheu, J-K., Chang, S-J., Kuo, C-H., Su, Y-K., Wu, L-W., Lai, Y-C., Tsai, J-M., Chi, G-C., and Wu, R-K.: White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technol. Lett. 15, 18 (2003).CrossRefGoogle Scholar
14.Huh, Y., Shim, J., Kim, Y., and Rag Do, Y.: Optical properties of three-band white light emitting diodes. J. Electrochem. Soc. 150, H57 (2003).CrossRefGoogle Scholar
15.Wang, Z-L., Liang, H-B., Gong, M-L., and Su, Q.: Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2. Electrochem. Solid State Lett. 8, H33 (2005).CrossRefGoogle Scholar
16.Lee, T-J., Luo, L-Y., Cheng, B-M., Diau, W-G., and Chen, T-M.. Investigation of Pr3+ as a sensitizer in quantum-cutting fluoride phosphors. Appl. Phys. Lett. 92, 081106 (2008).CrossRefGoogle Scholar
17.Xian, Z-G., Chen, D-M., Yang, M., and Ying, T.: Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping. J. Phys. Chem. Solids 71, 175 (2010).Google Scholar
18.Wei, X-T., Zhao, J-B., Zhang, W-P., Li, Y., and Yin, M.: Cooperative energy transfer in Eu3+, Yb3+ codoped Y2O3 phosphor. J. Rare Earths 28, 166 (2010).CrossRefGoogle Scholar
19.Solarz, P. and Ryba-Romanowski, W.: Energy transfer processes in K5Li2GdF10:Eu, Pr. Radiat. Meas. 42, 759 (2007).CrossRefGoogle Scholar
20.Zhang, X-Y., Lu, L-P., and Bo, C-H.: Rare Earth Luminescent Materials (National Defense Industry Press, Beijing, 2005), pp. 2122.Google Scholar
21.Shinn, M.D. and Sibley, W.A.: Eu2+-sensitized Mn2+ luminescence in RbMgF3:Eu, Mn. Phys. Rev. B 29, 3834 (1984).CrossRefGoogle Scholar
22.Liu, L-Y., Wang, D-J., and Mao, Z-Y.: Fluorescence enhancement of single-phase red-blue emitting Ba3MgSi2O8:Eu2+, Mn2+ phosphors via Dy3+ addition for plant cultivation. Optoelectron. Lett. 5, 26 (2009).CrossRefGoogle Scholar
23.Sabbagh Alvani, A.A., Moztarzadeh, F., and Sarabi, A.A.: Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8. J. Lumin. 114, 131 (2005).CrossRefGoogle Scholar
24.Lin, Y-H., Tang, Z-L., and Zhang, Z-T.: Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R=Ca, Sr, Ba) phosphors. J. Alloy. Compd. 348, 76 (2003).CrossRefGoogle Scholar
25.Ribeiro, S.J.L., Dahmouche, K., Ribeiro, C.A., Santilli, C.V., and Pulcinelli, S.H.J.: Study of hybrid silica-polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy. J. Sol-Gel Sci. Technol. 13, 427 (1998).CrossRefGoogle Scholar
26.Werts, M.H.V., Jukes, R.T.F., and Verhoeven, J.W.: The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 4, 1542 (2002).CrossRefGoogle Scholar
27.Lei, F. and Yan, B.: Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W, Mo; RE=Eu, Tb) submicro-phosphors. J. Solid State Chem. 181, 855 (2008).CrossRefGoogle Scholar
28.Liao, J-S., Xu, P., and Qiu, B.: Hydrothermal synthesis and luminescence properties of Y2O3: Eu red phosphor. Nonferr. Met. Sci. Eng. 1, 30 (2010).Google Scholar
29.Binnemans, K., Van Herck, K., and Gờrller-Walrand, C.: Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chem. Phys. Lett. 266, 297 (1997).CrossRefGoogle Scholar
30.Boyer, J.C., Vetrone, F., Capobianco, J.A., Speghini, A., and Bettinelli, M.: Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline Cubic Lu2O3. J. Phys. Chem. B 108, 20137 (2004).CrossRefGoogle Scholar
31.Kodaira, C.A., Claudia, A., Brito, H.F., and Felinto, M.C.F.C.: Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE=La and Gd) produced using the Pechini method. J. Solid State Chem. 171, 401 (2003).CrossRefGoogle Scholar
32.Reisfeld, R., Greenberg, E., Brown, R.N., Drexhage, M.G., and Jørgensen, C.K.: Fluorescence of europium(III) in a flouride glass containing zirconium. Chem. Phys. Lett. 95, 91 (1983).CrossRefGoogle Scholar