Skip to main content Accessibility help
×
Home

A study of stress-driven diffusive growth of voids in encapsulated interconnect lines

  • Anne I. Sauter (a1) and W.D. Nix (a1)

Abstract

Stress-driven diffusive growth of voids in encapsulated interconnect lines is studied. By calculating the rate of growth of a single void in a passivated line subjected to an initial hydrostatic tension stress and by assuming that failure occurs when the void reaches a critical size, a model for failure of encapsulated interconnect lines by stress voiding can be developed. The model for the prediction of void growth and failure is based on two limiting kinds of void growth. In one limit, which applies at short times, radial displacements occur by diffusional flow processes around the growing void and relax the local hydrostatic tension stress. In the long time limit, vacancies flow to the void from distant parts of the line by diffusion along grain boundaries, thereby relaxing the stress in a growing section of the line. A model based on a combination of these behaviors leads to a failure law for aluminum lines of the form tfσ2/d = 1019.2 exp(Q/RT) where tf is the failure time in seconds, σ is the initial hydrostatic tension stress in the line in Pa, d is the grain size in meters, and the activation energy, Q = 80.9 kJ/mol, is close to that for grain boundary diffusion in aluminum. The model predictions appear to be in good agreement with the few experiments on stress voiding that have been conducted.

Copyright

References

Hide All
1.Klema, J., Pyle, R., and Domangue, E., in Twenty-second Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1984), p. 1.
2.Turner, T. and Wendel, K., in Twenty-third Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1985), p. 142.
3.Curry, J., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G., and Thomas, A., in Twenty-second Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1984), p. 6.
4.Herschbein, S. B., Zulpa, P. A., and Curry, J. M., in Twenty-second Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1984), p. 134.
5.Owada, N., Hinode, K., Horiuchi, M., Nishida, T., Nakata, K., and Mukai, K., Proc. 2nd IEEE/VLSI Multilevel, 173 (1985).
6.Yue, J. T., Funsten, W. P., and Taylor, R. V., in Twenty-third Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1985), p. 126.
7.Jones, R. E., in Twenty-fifth Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1987), p. 9.
8.Jones, R. E. and Basehore, M. L., Appl. Phys. Lett. 50 (12), 725 (1987).
9.Groothuis, S. K. and Schroen, W. H., in Twenty-fifth Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1987), p. 1.
10.Sauter, A. I. and Nix, W. D., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 15.
11.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).
12.Greenebaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58, 1845 (1991).
13.Tezaki, A., Mineta, T., and Egawa, H., in Twenty-eighth Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1990), p. 22.
14.Sullivan, T. D., Appl. Phys. Lett. 55, 2399 (1989).
15.McPherson, J. W. and Dunn, C. F., J. Vac. Sci. Technol. B 5, 1321 (1987).
16.Yost, F. G., Scripta Metall. 23, 1323 (1989).
17.Yost, F. G. and Campbell, F. E., IEEE Circuits and Devices, May, 40 (1990).
18.Yost, F. G., Amos, D. E., and Romig, A. D. Jr, in Twenty-seventh Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1989), p. 193.
19.Li, C-Y., Black, R. D., and LaFontaine, W. R., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 225.
20.Sugano, Y., Minegushi, S., Sumi, H., and Itabashi, M., in Twentysixth Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1988), p. 34.
21.Kaneko, H., Hasunuma, M., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., in Twenty-eighth Proceedings Reliability Physics (Electron Devices and Reliability Societies of IEEE, New York, 1990), p. 194.
22.Sauter, A. I., Ph.D. Dissertation, Stanford University (1991).
23.Frost, H. J. and Ashby, M. F., Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982), p. 15.
24.Edington, J. W., Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold Co., New York, 1976), Appendix 3. 25. H. W. King, J. Mater. Sci. 1, 79 (1966).
26.Roller, D. E. and Blum, R., Physics: Mechanics, Waves and Thermodynamics (Holden-Day, San Francisco, CA, 1981), Vol. 1, p. 801.
27.Housner, G. W. and Vreeland, T. Jr, The Analysis of Stress and Deformation (Division of Engineering and Applied Science, California Institute of Technology, 1965), p. 294.
28.Frost, H. J. and Ashby, M. F., Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982), p. 21.
29.Ashby, M. F., Surf. Sci. 31, 498 (1972).
30.Private communication with Prof. Barnett, D. M., Stanford University (1990).
31.Handbook of Mathematical Functions edited by Abramowitz, M. and Stegun, I. A., National Bureau of Standards, 1024 (1964).
32.Handbook of Mathematical Functions edited by Abramowitz, M. and Stegun, I. A., National Bureau of Standards, p. 319.

A study of stress-driven diffusive growth of voids in encapsulated interconnect lines

  • Anne I. Sauter (a1) and W.D. Nix (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed