Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:24:26.408Z Has data issue: false hasContentIssue false

Structure and optical properties of plasma immersion ion processed boron-alloyed diamondlike carbon films

Published online by Cambridge University Press:  01 June 2006

Xiao-Ming He*
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
K.C. Walter
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
*
a) Address all correspondence to this author.e-mail: Xiaoming.he@averydennison.com
Get access

Abstract

Boron (B)-alloyed diamondlike carbon (B-DLC) films were prepared on polymethyl methacrylate (PMMA), glass, and silicon (100) using an inductive radio frequency Ar + C2H2 + B2H6 plasma immersion ion processing (PIIP) technique. The composition of the B-DLC films was measured by ion beam analysis techniques, and the bonding structure was characterized by infrared and Raman spectroscopy. The incorporation of B2H6 gas into the PIIP deposition introduced B-C bonds into the DLC structure, resulting in increased sp3-carbon bonding and improved optical performance. The energetic activation of the deposition atoms, induced by the ion bombardment during the PIIP film growth, enhanced the properties of the B-DLC films deposited on dielectric and transparent optical materials. With B-alloying and an optimized deposition energy of 40–135 eV, B-DLC films were synthesized with B-alloying up to 10.4 at.%, high hardness, high refractive index, and optical transmittance that is higher than that of unalloyed DLC films. The experimental results indicate that C-B hybridization and ion-energy transfer are critical to the synthesis of these hard and transparent B-DLC films.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lin, C.M., Chang, S.J., Yokoyama, M., Chuang, F.Y., Tasi, C.H., Wang, W.C., Lin, I.N.: Electron field emission characteristics of planar field emission array with diamondlike carbon electron emitters. Jpn. J. Appl. Phys. 38, 890 (1999).CrossRefGoogle Scholar
2.Zhang, X., Weber, W.H., Vassell, W.C., Potter, T.J., Tamor, M.A.: Optical study of silicon-containing amorphous hydrogenated carbon. J. Appl. Phys. 83, 2820 (1998).CrossRefGoogle Scholar
3.Weiler, M., Sattel, S., Giessen, T., Jung, K., Ehrhardt, H., Veerasamy, V.S., Robertson, J.: Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Phys. Rev. B 53, 1594 (1996).CrossRefGoogle ScholarPubMed
4.III, J.W. Ager: Optical characterization of sputtered carbon films. IEEE Trans. Magn. 29(1), 259 (1993).Google Scholar
5.Chan, W.C.W., Gaspari, F., Allen, T., Lim, P.K., Moreno, E., Sagnes, E., Manage, D., Szumak, J., Zukotynski, S.: Structural, optical, and electrical properties of doped hydrogenated diamondlike amorphous carbon films deposited using the dc saddle-field glow-discharge technique. J. Vac. Sci. Technol. A16, 889 (1998).CrossRefGoogle Scholar
6.Neuville, S., Matthews, A.: Hard carbon coating: The way forward. MRS Bull. 22(9), 22 (1997).CrossRefGoogle Scholar
7.Robertson, J.: Properties of diamondlike carbon. Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
8.Hakovirta, M., He, X.M., Nastasi, M.: Optical properties of fluorinated diamondlike carbon films produced by pulsed glow discharge plasma immersion ion processing. J. Appl. Phys. 88, 1456 (2000).CrossRefGoogle Scholar
9.He, X-M., Shu, L., Li, W-Z., Li, H-D.: Structure and properties of carbon nitride films synthesized by low energy ion bombardment. J. Mater. Res. 12, 1595 (1997).CrossRefGoogle Scholar
10.He, X.M., Hakovirta, M., Peters, A.M., Taylor, B., Nastasi, M.: Fluorine and boron co-doped diamondlike carbon films deposited by pulsed glow discharge plasma immersion ion processing. J. Vac. Sci. Technol. A 20, 638 (2002).CrossRefGoogle Scholar
11.Thiele, J.U., Rubarth, B., Hammer, P., Helmbold, A., Kessler, B., Rohwer, K., Meissner, D.: Ambiguous doping effects in amorphous hydrogenated carbon films prepared by PACVD. Diamond Relat. Mater. 3, 1103 (1994).CrossRefGoogle Scholar
12.Schenk, A., Winter, B., Lutterloh, C., Biener, J., Schubert, U.A., Kuppers, J.: The influence of boron doping on the structure and thermal decomposition of ultrathin C/B:H films. J. Appl. Phys. 77, 6006 (1995).CrossRefGoogle Scholar
13.Schenk, A., Winter, B., Lutterloh, C., Biener, J., Schubert, U.A., Kuppers, J.: The origin of reduced chemical erosion of graphite based materials induced by boron doping. J. Nucl. Mater. 220–222, 767 (1995).CrossRefGoogle Scholar
14.Tuszewski, M., Henins, I., Nastasi, M., Scarborough, W.K., Walter, K.C., Lee, D.H.: Inductive plasma sources for plasma implanatation and deposition. IEEE Trans. Plasma Sci. 26, 1653 (1998).CrossRefGoogle Scholar
15.Lee, D.H., He, X.M., Walter, K.C., Nastasi, M., Tesmer, J.R., Tuszewski, M., Tallant, D.R.: Diamondlike carbon deposition on silicon using radio-frequency inductive plasma of Ar and C2H2 gas mixture in plasma immersion ion deposition. Appl. Phys. Lett. 73, 2423 (1998).CrossRefGoogle Scholar
16.Nastasi, M., Mayer, J.W., Hirvonen, J.K.: Ion-solid interactions: Fundamentals and applications (Cambridge University Press, Cambridge, 1996), pp. 37139, 363–407.CrossRefGoogle Scholar
17.Lee, D.H., Walter, K.C., Nastasi, M.: Processing of diamondlike carbon using plasma immersion ion deposition. J. Vac. Sci. Technol. B 17(2), 818 (1999).CrossRefGoogle Scholar
18.He, X.M., Walter, K.C., Nastasi, M.: Plasma immersion ion processed B-doped diamondlike films. J. Phys. Condens. Matter. 12, L183 (2000).CrossRefGoogle Scholar
19.He, X.M., Lee, D.H., Walter, K.C., Li, D.Q., Nastasi, M.: Structure and optical properties of diamondlike carbon synthesized by plasma immersion ion processing. J. Mater. Res. 14, 2080 (1999).CrossRefGoogle Scholar
20.Doolittle, L.R.: Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Meth. B9, 344 (1985).CrossRefGoogle Scholar
21.Doolittle, L.R.: Semiautomatic algorithm for Rutherford backscattering analysis. Nucl. Instrum. Meth. B15, 227 (1986).CrossRefGoogle Scholar
22.Johansson, M.P., Ivanov, I., Hultman, L., Munger, E.P., Schutze, A.: Low-temperature deposition of cubic BN:C films by unbalanced direct current magnetron sputtering of a B4C target. J. Vac. Sci. Technol. A 14(6), 3100 (1996).CrossRefGoogle Scholar
23.Tamor, M.A., Vassell, W.C.: Raman “fingprinting” of amorphous carbon films. J. Appl. Phys. 76(6), 3823 (1994).CrossRefGoogle Scholar
24.Shirai, K., Emura, S., Gonda, A., Kumashiro, Y.: Infrared study of amorphous B1−xCx films. J. Appl. Phys. 78, 3392 (1995).CrossRefGoogle Scholar
25.Annen, A., Saß, M., Beckmann, R., von Keudell, A., Jacob, W.: Structure of plasma-deposited amorphous hydrogenated boron-carbon thin films. Thin Solid Films 312, 147 (1998).CrossRefGoogle Scholar
26.Lin, S.H., Feldman, B.J., Li, D.: Microhardness study of amorphous hydrogenated boron carbide deposited on a cathode substrate by plasma deposition. Appl. Phys. Lett. 69, 2373 (1996).CrossRefGoogle Scholar
27.Panwar, O.S., Sarangi, D., Kumar, S., Dixit, P.N., Bhattacharyya, R.: Diamondlike carbon films grown using a saddle field source. J. Vac. Sci. Technol. A 13, 2519 (1995).CrossRefGoogle Scholar
28.Uhlmann, S., Frauenheim, Th., Lifshitz, Y.: Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon. Phys. Rev. Lett. 81, 641 (1998).CrossRefGoogle Scholar
29.McKenzie, D.R., Muller, D., Pailthorpe, B.A.: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle ScholarPubMed
30.Seo, S.C., Ingram, D.C., Richardson, H.H.: Effect of substrate bias on the properties of diamondlike carbon films deposited using unbalanced magnetron sputtering. J. Vac. Sci. Technol. A 40, 2856 (1995).CrossRefGoogle Scholar
31.Zhang, Q., Yoon, S.F., Ahn, R.J., Yang, H., Bahr, D.: Deposition of hydrogenated diamondlike carbon films under the impact of energetic hydrocarbon ions. J. Appl. Phys. 84, 5538 (1998).CrossRefGoogle Scholar