Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:09:31.127Z Has data issue: false hasContentIssue false

Structural studies of Al-based powders prepared by chemical methods

Published online by Cambridge University Press:  31 January 2011

M. Lenarda
Affiliation:
Dipartimento di Chimica, DD 2137, 30123 Venezia, Italy
R. Ganzerla
Affiliation:
Dipartimento di Chimica, DD 2137, 30123 Venezia, Italy
L. Storaro
Affiliation:
Istituto di Chimica, via del Cotonificio 108, 33100 Udine, Italy
R. Frattini
Affiliation:
Dipartimento di Chimica Fisica, DD 2137, 30123 Venezia, Italy
S. Enzo
Affiliation:
Dipartimento di Chimica Fisica, DD 2137, 30123 Venezia, Italy
Get access

Abstract

Finely dispersed metal powders have been obtained after chemical reduction of Ni and Co acetylacetonate by lithium aluminum hydride in tetrahydrofuran at low temperature. The Al/Ni and Al/Co stoichiometry of the as-reduced powders was 1.1 and 1.2, respectively. The structure and thermal stability of the as-reduced powders were affected by the temperature of reduction. For the NiAl powders it was found that the thermal treatment initially induces a separation of highly unstable Ni(Al) and Al(Ni) solid solutions, which subsequently react to give a single NiAl phase of cubic structure not reported in the equilibrium phase diagram. Conversely, the reduction of cobalt acetylacetonate directly gives a cubic metastable phase, from which precipitates some hexagonal form of Co after treatment at 450 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Transformation of organometallics into common and exotic materials: design and activation, edited by Laine, R. M., NATO ASI Series No 141 (M. Nijhoff Pub., Dordrecht, 1988).CrossRefGoogle Scholar
2.Solid state powder processing, Clauer, A. H. and deBarbadillo, J.J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990).Google Scholar
3.Davis, S. and Klabunde, K.J., Chem. Rev. 82, 153 (1982).CrossRefGoogle Scholar
4. (a) Rieke, R. D., Ace. Chem. Res. 10, 301 (1977).CrossRefGoogle Scholar
(b) Kavaliunas, A. V., Taylor, A., and Rieke, R. D., Organometallics 2, 377 (1983).CrossRefGoogle Scholar
(c) Rochfort, G. L. and Rieke, R. D., Inorg. Chem. 25, 348 (1986).CrossRefGoogle Scholar
5.Wade, R. C., J. Mol. Catal. 18, 273 (1983).CrossRefGoogle Scholar
6.Ganem, B. and Osby, J.O., Chem. Rev. 86, 763 (1986).CrossRefGoogle Scholar
7. (a) Corrias, A., Ennas, G., Licheri, G., Marongiu, G., and Paschina, G., Chem. Mater. 2, 363 (1990).CrossRefGoogle Scholar
(b) Carturan, G., Enzo, S., Ganzerla, R., Lenarda, M., and Zanoni, R., J. Chem. Soc. Faraday Trans. 86, 739 (1990).CrossRefGoogle Scholar
8.Osby, J. O., Heinzman, S. W., and Ganem, B., J. Am. Chem. Soc. 108, 67 (1986).CrossRefGoogle Scholar
9.Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1964).Google Scholar
10.Buerger, M. J., X-ray Crystallography (John Wiley & Sons, New York, 1966).Google Scholar
11.Rietveld, H.M., Aust. J. Phys. 41, 113 (1988).CrossRefGoogle Scholar
12. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA (1974), card nos. 4–787 and 4–850.Google Scholar
13.International Tables for X-ray Crystallography (Kynoch Press, Birmingham, U.K., 1974).Google Scholar
14.Cocco, G., Enzo, S., Schiffini, L., and Battezzati, L., New Materials by Mechanical Alloying Techniques, edited by Artz, E. and Schultz, L. (DGM-Verlag, 1989).Google Scholar
15.Brewer, L., J. Phys. Chem. 94, 1196 (1990).CrossRefGoogle Scholar