Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T09:57:25.260Z Has data issue: false hasContentIssue false

Structural properties of epitaxial TiO2 films grown on sapphire (11$\overline 1$0) by MOCVD

Published online by Cambridge University Press:  31 January 2011

H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H. You
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Y. Gao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. Guo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
C.M. Foster
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
R.P. Chiarello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
T.J. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D.J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Titanium dioxide thin films were grown on sapphire (11$\overline 1$0) substrates in a low-pressure metal-organic chemical vapor deposition system at temperatures ranging from 400 to 800 °C. Raman scattering, x-ray diffraction, transmission electron microscopy, and high resolution electron microscopy techniques were employed to characterize the structural properties of the deposited films. The resultant phases and structures of the deposited films depended on both the growth temperature and the substrate surface properties (surface imperfections, steps, etc.). At the growth temperature of 800 °C, single-crystal rutile films were obtained reproducibly with two possible epitaxial relationships. At lower temperatures (400 to 775 °C), the deposited films can be epitaxial or polycrystalline with highly oriented grains. The similarity between the atomic arrangements of the substrate and the film is discussed in detail to explain the observed epitaxial relationships and abruptness of the interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goto, Kazuhiro Sylvester, Solid State Electrochemistry and Its Applications to Sensors and Electronics Devices (Elsevier, New York, 1988).Google Scholar
2.Ryabova, L. A., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), Vol. 7, Chap. 5.Google Scholar
3.Glass, H. L. and Liaw, J. H. W., J. Appl. Phys. 49, 1578 (1978).CrossRefGoogle Scholar
4.Yamaka, E., Watanabe, H., Kimura, H., Kanaya, H., and Ohkuma, H., J. Vac. Sci. Technol. A6, 2921 (1988).CrossRefGoogle Scholar
5.Francombe, M. H. and Krishnaswamy, S. V., J. Vac. Sci. Technol. A8, 1382 (1990).Google Scholar
6.Kobayashi, Y., Terada, S., and Kubota, K., Thin Solid Films 168, 133 (1989).CrossRefGoogle Scholar
7.Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
8.Wyckoff, Ralph W. G., Crystal Structures, 2nd ed. (John Wiley & Sons, New York, 1963), Vol. 1.Google Scholar
9.Hyde, B. G. and Anderson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989).Google Scholar
10.Bursill, L. A. and Hyde, B. G., Prog. Solid State Chem., edited by Reiss, H. and McCaldin, J. O., 7, 177 (1972).CrossRefGoogle Scholar
11.Grant, F. A., Rev. Modern Phys. 31, 646 (1959).CrossRefGoogle Scholar
12.Frederikse, H. P. R., J. Appl. Phys. 32, 2211 (1961).Google Scholar
13.Von Hippel, A., Kalnajs, J., and Westphal, W. B., J. Phys. Chem. Solids 23, 779 (1962).Google Scholar
14.Feuersanger, A. E., Proc. IEEE 52,1463 (1964).CrossRefGoogle Scholar
15.Fitzgibbons, E. T., Sladek, K. J., and Hartwig, W. H., J. Electrochem. Soc. 119, 735 (1972).Google Scholar
16.Pulker, H. K., Paesold, G., and Ritter, E., Appl. Opt. 15, 2986 (1976).Google Scholar
17.Logothetis, E. M. and Kaiser, W. J., Sensors and Actuators 4, 333 (1983).Google Scholar
18.Yeung, K. S. and Lam, Y. W., Thin Solid Films 109, 169 (1983).Google Scholar
19.Takahashi, Y., Suzuki, H., and Nasu, M., J. Chem. Soc, Faraday Trans. 1, 81, 3117 (1985).Google Scholar
20.Kurtz, S. R. and Gordon, R. G., Thin Solid Films 147, 167 (1987).Google Scholar
21.Schmitt, B., Borgogno, J. P., lbrand, G., and Pelletier, E., Appl. Opt. 25, 3909 (1986).CrossRefGoogle Scholar
22.Lehmamn, H. W. and Frick, K., Appl. Opt. 27, 4920 (1988).CrossRefGoogle Scholar
23.DeVries, R. C. and Roy, R., Am. Ceram. Soc. Bull. 33, 370 (1954).Google Scholar
24.Wahlbeck, P. G. and Gilles, P. W., J. Am. Ceram. Soc. 49, 180 (1966).Google Scholar
25.Chang, H. L. M., Parker, J. C., You, H., Xu, J. J., and Lam, D. J., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), pp. 343–348.Google Scholar
26.Parker, J. C., Chang, H. L. M., Xu, J. J., and Lam, D. J., ibid., pp. 337–341.Google Scholar
27.Porto, S. P. S., Fleury, P. A., and Damen, T. C., Phys. Rev. 154, 522 (1967).Google Scholar
28.Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E., and Liliental-Weber, Z. (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991), pp. 685–690.Google Scholar
29.Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., Philos. Mag. A 65, 1103 (1992).CrossRefGoogle Scholar
30.Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spec. 7, 321 (1978).Google Scholar