Skip to main content Accessibility help

The sintering behavior of ultrafine alumina particles

  • John E. Bonevich (a1) and Laurence D. Marks (a1)


Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.


Corresponding author

a)Present address: Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-03, Japan.


Hide All
1.Nabarro, F. R. N., Rept. Conf. Strength of Solids (1948), p. 75.
2.Herring, C., J. Appl. Phys. 21, 437 (1950).
3.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).
4.Hall, E. O., Proc. Phys. Soc. London B 64, 747 (1951).
5.Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).
6.Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).
7.Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. 24, 201 (1990).
8.Wunderlich, W., Ishida, Y., and Maurer, R., Scripta Metall. 24, 403 (1990).
9.Iijima, S., Jpn. J. Appl. Phys. 23, L347 (1984).
10.Iijima, S., J. Electron Microsc. 34, 249 (1985).
11.Warble, C. E., J. Mater. Sci. 20, 2512 (1985).
12.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).
13.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 24, 145 (1990).
14.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).
15.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).
16.Zangwill, A., Physics at Surfaces (Cambridge University Press, Cambridge, 1988).
17.Howie, A. and Marks, L. D., Philos. Mag. A 49, 95 (1984).
18.Bonevich, J. E., in Proc. 47th Ann. Meet. Electron. Microsc. Soc. Am. (1988), p. 258.
19.Kimoto, K. and Nishida, I., Jpn. J. Appl. Phys. 6, 1047 (1967).
20.Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).
21.Hayashi, T., Ohno, T., Yatsuya, S., and Uyeda, R., Jpn. J. Appl. Phys. 16, 705 (1977).
22.Thölén, A. R., Acta Metall. 27, 1765 (1979).
23.Heinemann, K., Yacaman, M. J., Yang, C. Y., and Poppa, H., J. Cryst. Growth 47, 177 (1979).
24.Bonevich, J. E., Teng, M-H., Johnson, D. L., and Marks, L. D., Review Sci. Instrum. 62, 3061 (1991).
25.Bonevich, J. E. and Marks, L. D., Microscopy (1992, in press); also in Hitachi Instrument News 17, 4 (1989).
26.There are four cubic ‘γ’-phases in Crystal Data: Determinative Tables, 3rd ed., edited by Donnay, J. D. H. and Ondik, H. M. (JCPDS, 1973), Vol. 2, pp. 35, 189, 195.
27.Rooksby, H. P., X-ray Identification and Crystal Structures of Clay Minerals (London, 1951).
28.Smith, J. V., Geometrical and Structural Crystallography (John Wiley, New York, 1982).
29.Lippens, B. C. and deBoer, J. H., Acta Cryst. 17, 1312 (1964).
30.Rooksby, H. P. and Rooymans, C. J. M., Clay Minerals Bull. 4, 234 (1961).
31.Dauger, A. and Fargeot, D., Radiat. Eff. 74, 279 (1983).
32.Fargeot, D., Mercurio, D., and Dauger, A., Mater. Chem. Phys. 24, 299 (1990).
33.Jayaram, V. and Levi, C. G., Acta Metall. 37, 569 (1989).
34.Dieckmann, R., Ber. Bunsenges. Phys. Chem. 86, 112 (1982).
35.Ernst, F., Pirouz, P., and Heuer, A. H., Philos. Mag. A 63, 259 (1991).
36. X-ray analysis of UFP specimens conducted by Teng, M-H. at Northwestern University.
37.Teng, M-H., Ph.D. Dissertation, Northwestern University (1991), in preparation.
38.Bonevich, J. E. and Marks, L. D., Ultramicroscopy 35, 161 (1991).
39.Bursill, L. A. and Lin, P. J., Philos. Mag. A 60, 307 (1989).
40.Hannson, I. and Thölén, A. R., Philos. Mag. A 37, 535 (1978).
41.Thölén, A. R., in Microscopic Aspects of Adhesion and Lubrication, edited by Georges, J. M. (Elsevier, Amsterdam, 1982), p. 263.
42.Marks, L. D., Surf. Sci. 150, 302 (1985).
43.Johnson, D. L., J. Appl. Phys. 40, 192 (1969).
44.Nichols, F. A., J. Appl. Phys. 37, 2805 (1966).
45.Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand, New York, 1981), pp. 199201.
46.Searcy, A. W., J. Am. Ceram. Soc. 68, C267 (1985).
47.Marks, L. D., J. Cryst. Growth 61, 556 (1983).
48.Ajayan, P. M. and Marks, L. D., Phase Transitions 24–26, 229 (1990).
49.Shingu, P. H., Ph.D. Dissertation, Northwestern University (1967), p. 64.
50.Komatsu, M. and Fujita, H., Hitachi Instrum. News 21, 18 (1991).
51.Steiner, C.J-P., Hasselman, D. P. H., and Spriggs, R. M., J. Am. Ceram. Soc. 54, 412 (1971).
52.Hirayama, T., J. Am. Ceram. Soc. 70, C122 (1987).

Related content

Powered by UNSILO

The sintering behavior of ultrafine alumina particles

  • John E. Bonevich (a1) and Laurence D. Marks (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.