Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T14:32:31.912Z Has data issue: false hasContentIssue false

Processing Magnetoresistive Thin Films Via Chemical Solution Deposition

Published online by Cambridge University Press:  31 January 2011

A. D. Polli
Affiliation:
Materials Department, Materials Research Laboratory, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department, Materials Research Laboratory, University of California, Santa Barbara, California 93106
M. Ahlskog
Affiliation:
Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106
Reghu Menon
Affiliation:
Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106
A. K. Cheetham
Affiliation:
Materials Department, Materials Research Laboratory, University of California, Santa Barbara, California 93106
Get access

Abstract

A chemical solution deposition (CSD) procedure was used to prepare epitaxial lanthanum calcium manganese oxide (LCMO) thin films on (100) SrTiO3 single-crystal substrates. The colossal magnetoresistance (CMR) properties of the films were found to be comparable to those processed with vacuum deposition techniques and to bulk samples. The (200) LCMO d-spacing and insulator-metal transition temperature (TIM) were measured for films heat-treated at different temperatures, partial pressures of O2, and different times. The variations observed suggest a direct link between lattice parameter and TIM, as can be understood through their mutual dependence on the Mn4+/Mn3+ ratio. The measurements also suggest that film and powder samples crystallize Mn41-rich with respect to the Ca-substitution level, consistent with the larger lattice parameter and higher TIM observed following short heat treatments at high temperatures or long treatments at lower temperatures. Films refired in reducing conditions had the largest (200) d-spacing and slightly lower TIM, as expected from the 30% Ca-substitution level and consistent with the LCMO electronic/magnetic phase diagram constructed for bulk samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chahara, K-I., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 19901992 (1993).CrossRefGoogle Scholar
2.Mahendiran, M., Tiwary, S.K., Raychaudhuri, A.K., Rama-krishnam, T.V., Mahesh, R., Rangavittal, N., and Rao, C.N.R, Phys. Rev. B 53, 33483357 (1996).CrossRefGoogle Scholar
3.Schiffer, P., Ramirez, A. P., Bao, W., and Cheong, S.W., Phys. Rev. Lett. 75, 33363339 (1995).CrossRefGoogle Scholar
4.Mahesh, R., Mahendiran, R., Raychaudhuri, A.K., and Rao, C. N. R., J. Solid State Chem. 120, 204207 (1995).CrossRefGoogle Scholar
5.Hwang, H.Y., Cheong, S-W., Radaelli, P. G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914917 (1995).CrossRefGoogle Scholar
6.Tokura, Y., Urushibara, A., Moritomo, Y., Asamitsu, A., Tomioka, Y., Arima, T., and Kido, G., Mater. Sci. Eng. B31, 187191 (1995).CrossRefGoogle Scholar
7.Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Phys. Rev. B 51, 1410314109 (1995).CrossRefGoogle Scholar
8.Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L. H., Science 2674, 413415 (1994).CrossRefGoogle Scholar
9.Hundley, M.F., Hawley, M., Heffner, R. H., Jia, Q. X., Neumeier, J. J., Tesmer, J., Thompson, J. D., and Wu, X.D., Appl. Phys. Lett. 67, 860862 (1995).CrossRefGoogle Scholar
10.Zhang, W., Boyd, W., Elliot, M., and W. Herrenden-Harkerand, Appl. Phys. Lett. 69, 39293931 (1996).CrossRefGoogle Scholar
11.Gupta, A., McGuire, T. R., Duncombe, P.R., Rupp, M., Sun, J.Z., Laibowitz, R.B., and Xiao, G., Appl. Phys. Lett. 67, 34943496 (1995).CrossRefGoogle Scholar
12.Modak, A.R. and Krishnan, M., in Epitaxial Oxide Thin Films II, edited by Speck, J. S., Fork, D.K., Wolf, R. M., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), pp. 443448.Google Scholar
13.Bae, S-Y. and Wang, S. X., Appl. Phys. Lett. 68, 121123 (1996).CrossRefGoogle Scholar
14.Miller, K.T., Chan, C.J., Cain, M.G., and Lange, F.F., J. Mater. Res. 8, 169177 (1993).CrossRefGoogle Scholar
15.Mahesh, R., Mahendiran, R., Raychaudhuri, A.K., and Rao, C. N. R., Appl. Phys. Lett. 68, 22912293 (1996).CrossRefGoogle Scholar
16.Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B26, 10461048 (1970).CrossRefGoogle Scholar
17.Kuo, J. H., Anderson, H. U., and Sparlin, D. M., J. Solid State Chem. 83, 5260 (1989).CrossRefGoogle Scholar
18.Bransky, I. and Tallan, N.M., J. Electrochem. Soc. 118, 788793 (1971).CrossRefGoogle Scholar
19.Alonso, J. A., Martínez-Loze, M. J., and Casais, M. T., Eur. J. Solid State Inorg. Chem. 33, 331341 (1996).Google Scholar
20.Hervier, M., Mahesh, R., Rangavittal, N., and Rao, C.N.R, Eur. J. Solid State Inorg. Chem. 32, 7994 (1995).Google Scholar
21.Huang, Q., Santoro, A., Lynn, J.W., Erwin, R. W., Borchers, J. A., Peng, J. L., and Greene, R. L., unpublished.Google Scholar
22.Levi, C.G., Acta Materialia 46, 787800 (1998).CrossRefGoogle Scholar
23.Polli, A.D., Lange, F. F., Levi, C. G., and Mayer, J., J. Am. Ceram. Soc. 79, 17451755 (1996).CrossRefGoogle Scholar
24.Cain, M.G. and Lange, F. F., J. Mater. Res. 9, 674687 (1994).CrossRefGoogle Scholar