Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:09:31.175Z Has data issue: false hasContentIssue false

Preparation of Pb(Zr1−xTix)O3 powders from complex alkoxide and their lower-temperature crystallization

Published online by Cambridge University Press:  31 January 2011

Toshimi Fukui*
Affiliation:
Colloid Research Institute, 350-1 Ogura, Yahata-higashi-ku, Kitakyushu 805, Japan
Chihiro Sakurai*
Affiliation:
Colloid Research Institute, 350-1 Ogura, Yahata-higashi-ku, Kitakyushu 805, Japan
Masahiko Okuyama*
Affiliation:
Colloid Research Institute, 350-1 Ogura, Yahata-higashi-ku, Kitakyushu 805, Japan
*
aPresent address: Technical Research Center, Krosaki Co., 1-1 Higashihama, Yahata-nishi, Kitakyushu 806, Japan.
b)Present address: Advanced Materials and Research Laboratory, Nippon Steel Co., 1618 Ida, Nakahara, Kawasaki 211, Japan.
c)Present address: Research and Development Center, NGK Spark Plug Co., Ltd., 2808 Iwasaki, Komaki 485, Japan.
Get access

Abstract

Pb(ZrxTix)O3 (PZT) powders of 0.2–0.4 μm particle sizes could be obtained from the complex alkoxides synthesized from lead acetate, Zr(OBun)4, and Ti(OEt)4. The powders crystallized to well-crystalline perovskite phases at a temperature as low as 250 °C, independent of the compositional ratio of the B site (Zr/Ti). For the preparation of powders, the complexing of alkoxides, addition of the second solvent such as acetone, acetonitrile, or methyl acetate, and base-catalyzed hydrolysis with ammonia water were essential.

Type
Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shirane, G. and Hoshino, S., J. Phys. Soc. Jpn. 6, 265270 (1951).CrossRefGoogle Scholar
2.Berlincourt, D., Ferroelectrics 10, 111119 (1976).CrossRefGoogle Scholar
3.Gurkovich, S. R. and Blum, J. B., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, New York, 1984), pp. 152–160.Google Scholar
4.Budd, K.D., Dey, S. K., and Payne, D.A., Proc. Br. Ceram. Soc,. 36, 107121 (1985).Google Scholar
5.Chen, C., Ryder, D. F., Jr., and Spurgeon, W. A., Am, J.. Ceram. Soc. 72, 14951498 (1989).CrossRefGoogle Scholar
6.Yamaguchi, O., Narai, A., Komastu, T., and Shimizu, K., Am, J.. Ceram. Soc. 69, C256257 (1986).Google Scholar
7.Ostertag, R., Rinn, G., Tunker, G., and Schmidt, H., Br. Ceram. Proc. 41, 1120 (1989).Google Scholar
8.Yamaguchi, O., Fukuoka, F., and Kawakami, Y., Mater, J.. Sci. Lett. 9, 958959 (1990).CrossRefGoogle Scholar
9.Hirashima, H., Onishi, E., and Nakagawa, M., J. Non-Cryst. Solids 121, 404406 (1990).CrossRefGoogle Scholar
10.Mazdiyasni, K. S., Dolloff, R. T., and Smith, J. S., II J. Am. Ceram. Soc. 52, 523526 (1969).CrossRefGoogle Scholar
11.Smith, J. S., II Dolloff, R. T., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 53, 9195 (1970).CrossRefGoogle Scholar
12.Kezuka, K., Hayashi, Y., and Yamaguchi, T., J. Am. Ceram. Soc. 72, 16601663 (1989).CrossRefGoogle Scholar
13.Kiss, K., Magder, J., Vukasovich, M.S., and Lockhart, R.J., J. Am. Ceram. Soc. 49, 291295M (1966).CrossRefGoogle Scholar
14.Chaput, F. and Boilot, J.P., Mater, J.. Sci. Lett. 6, 11101112 (1987).CrossRefGoogle Scholar