Skip to main content Accessibility help

Plastic Deformation and Mechanical Softening of Pd40Cu30Ni10P20 Bulk Metallic Glass During Nanoindentation

  • A. Concustell (a1), J. Sort (a1), G. Alcalá (a2), S. Mato (a2), A. Gebert (a2), J. Eckert (a3) and M.D. Baró (a1)...


Nanoindentation tests of Pd40Cu30Ni10P20 bulk metallic glass were performed over a wide range of indentation rates (from 0.04 up to 6.4 mN s−1) under the standard load control mode. New results using the feedback displacement control mode are also presented. The dependence of the pop-in formation on the loading rate is investigated. Variations in hardness and reduced elastic modulus as a function of the indentation rate are observed. A softening effect occurs when increasing the loading rate. This is explained by the differences in plastic deformation achieved at different indentation rates. The displacement control mode was used to avoid the shear localization of the free volume, leading to the almost complete absence of pop-ins along the loading curve. The obtained results suggest that plastic flow in bulk metallic glasses is governed by the rate of creation of free volume, which depends on the strain rate and its localization into shear bands.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).
3Gebert, A., Mudali, U.K., Eckert, J. and Schultz, L.: Electrochemical reactivity of zirconium-based bulk metallic glasses, in Amorphous and Nanocrystalline Metals, edited by Busch, R., Hufnagel, T.C., Eckert, J., Inoue, A., Johnson, W.L., and Yavari, A.R. (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004), p. 369.
4Concustell, A., Zielinska, M., Révész, Á., Varga, L.K., Suriñach, S. and Baró, M.D.: Thermal characterization of Cu60ZrXTi40−x metallic glasses (x = 15, 20, 22, 25, 30). Intermetallics 12, 1063 (2004).
5Bruck, H.A., Christman, T., Rosakis, A.J. and Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).
6Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J. and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).
7Pang, S.J., Zhang, T., Asami, K. and Inoue, A.: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489 (2002).
8Davis, L.A. and Kavesh, S.: Deformation and fracture of an amorphous metallic alloy at high-pressure. J. Mater. Sci. 10, 453 (1975).
9Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A. and Higashi, K.: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scripta Mater. 46, 43 (2002).
10Subhash, G., Dowding, R.J. and Kecskes, L.J.: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu– Ni–Be alloy. Mater. Sci. Eng. A 334, 33 (2002).
11Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
12Li, J., Spaepen, F. and Hufnagel, T.C.: Nanometer-scale defects in shear bands in a metallic glass. Philos. Mag. 82, 2623 (2002).
13Li, J., Wang, L. and Hufnagel, T.C.: Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phys. Rev. B 65, 144201 (2002).
14Wright, W.J., Hufnagel, T.C. and Nix, W.D.: Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 93, 1432 (2003).
15Kimura, H. and Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31, 231 (1983).
16Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A. and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).
17Turnbull, D. and Cohen, M.H.: Concering reconstructive tranformation and formation of glass. J. Chem. Phys. 29, 1049 (1958).
18Duine, P.A., Sietsma, J. and van den Beukel, A.: Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data. Acta Metall. Mater. 40, 743 (1992).
19Van Aken, B., de Hey, P. and Sietsma, J.: Structural relaxation and plastic flow in amorphous La50Al25Ni25. Mater. Sci. Eng. A 278, 247 (2000).
20Golovin, Y.I., Ivolgin, V.I., Khonik, V.A., Kitagawa, K. and Tyurin, A.I.: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).
21Schuh, C.A., Argon, A.S., Nieh, T.G. and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. A 83, 2585 (2003).
22Schuh, C.A., Nieh, T.G. and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).
23Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
24Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T. and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A 375–377, 1182 (2004).
25Fischer-Cripps, A.C.: A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).
26Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
27Chinh, N.Q., Gubicza, J., Kovács, Zs. and Lendvai, J.: Depth-sensing indentation tests in studying plastic instabilities. J. Mater. Res. 19, 31 (2004).
28Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Company, London, U.K., 1988).
29Larsson, P.L., Giannakopoulos, A.E., Soderlund, E., Rowcliffe, J. and Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Sol. Struct. 33, 221 (1996).
30Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
31Jiang, W.H. and Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).
32Steif, P.S., Spaepen, F. and Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).
33Schuh, C.A., Lund, A.C. and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modelling. Acta Mater. 52, 5879 (2004).


Plastic Deformation and Mechanical Softening of Pd40Cu30Ni10P20 Bulk Metallic Glass During Nanoindentation

  • A. Concustell (a1), J. Sort (a1), G. Alcalá (a2), S. Mato (a2), A. Gebert (a2), J. Eckert (a3) and M.D. Baró (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed