Skip to main content Accessibility help

Ion beam synthesis of nitride layers in iron

  • A.M. Vredenberg (a1), C.M. Pérez-Martin (a1), J.S. Custer (a1), D.O. Boerma (a1), L. de Wit (a1), F.W. Saris (a1), N.M. van der Pers (a2), Th.H. de Keijser (a2) and E.J. Mittemeijer (a2)...


Stoichiometric iron nitride layers have been synthesized by high dose, high energy nitrogen implantation into Fe using a two-step implantation process. First, a nitrogen preimplantation at ~100 °C is used to form nitride precipitates. A low temperature is necessary to restrict the nitrogen mobility. Second, 1 MeV implantation at ~300 °C leads to the formation of a stoichiometric γ′–Fe4N layer at the position of the preimplanted N atoms. Growth of this nitride layer proceeds by diffusion of the implanted N through either the α–Fe matrix (for 200 or 500 keV preimplantations) or the nitride layer itself (for 1 MeV preimplantation). During annealing above 350 °C the γ′ layers dissolve in a planar fashion, characterized by an activation energy of 2.3 eV. Phase formation during preimplantation and phase transformations during subsequent annealing or hot implantation can be understood from the thermodynamics for the Fe–N system, while the kinetics of layer growth is influenced by the beam-induced defects. The experiment and model suggest that γ′ is not a thermodynamically stable phase below 310 ± 10 °C and should decompose into α (ferrite) and ∊ nitride.



Hide All
1Hemment, P.F.L., in Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, PA, 1986), p. 207, and references therein.
2Celler, G. K. and White, A. E., Mater. Res. Soc. Bull. 17, 40 (1992).
3Petruzzello, T.F., McGee, T.F., Frommer, M.H., Rummennik, V., Walters, P. A., and Chou, C.J., J. Appl. Phys. 58, 4605 (1985).
4Somers, M. A. J. and Mittemeijer, E. J., Surf. Eng. 3, 123 (1987).
5Prenosil, B., Harterei-Techn. Mitt. 28, 157 (1973).
6Vredenberg, A. M., Perez-Martin, C. M., Custer, J. S., Boerma, D. O., Wit, L. de, Saris, F. W., Pers, N. M. van der, Keijser, Th. H. de, and Mittemeijer, E.J., Surf. & Coat. Technol. 51, 79 (1992).
7Jack, D.H. and Jack, K.H., Mater. Sci. Eng. 11, 1 (1973) and references therein.
8Wriedt, H.A., Gockcen, N.A., and Nafziger, R.H., Bull. Alloy Phase Diagrams 8, 355 (1987).
9Drako, V.M. and Gumansky, G.A., Rad. Eff. 66, 101 (1982).
10Rauschenbach, B. and Kolitsch, A., Phys. Status Solidi 80, 211 (1983).
11Rauschenbach, B., Kolitsch, A., and Homuth, K., Phys. Status Solidi 80, 471 (1983).
12Fayeulle, S., Treheux, D., and Esnouf, C., Nucl. Instrum. Methods B7/8, 171 (1985).
13Follsteadt, D. M., Knapp, J. A., Pope, L. E., and Picraux, S. T., Nucl. Instrum. Methods B12, 359 (1985).
14Rauschenbach, B., Nucl. Instrum. Methods B18, 34 (1986).
15Rauschenbach, B., Homuth, K., and Kastner, G., Nucl. Instrum. Methods B23, 316 (1987).
16Marest, G., Defect Diff. Forum 57, 273 (1988) and references therein.
17Terwagne, G., Tendeloo, G. van, and Donnelly, S. E., J. Appl. Phys. 65, 4225 (1989).
18Terwagne, G., Piette, M., Bertrand, P., and Bodart, F., Mater. Sci. Eng. B2, 195 (1989).
19Arnold, A., Ramlau, R., and Kaat, E. H. te, Nucl. Instrum. Methods B59/60, 726 (1991).
20Rauschenbach, B., Nucl. Instrum. Methods B53, 35 (1991).
21Vredenberg, A.M., Cui, F.Z., Saris, F.W., Pers, N. M. v.d., and Colijn, P.F., Mater. Sci. Eng. A115, 297 (1989).
22Williamson, D. L., Qu, Yi, Wei, R., Sampath, W. S., and Wilbur, P. J., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L. E., Greene, J., and Smidt, F. A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), p. 409.
23Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., Qu, Y., and Wang, L., J. Trib. 112, 27 (1990).
24Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., and Wang, L., J. Trib. 113, 166 (1991).
25Wei, R., Wilbur, P.J., Ozturk, O., and Williamson, D.L., Nucl. Instrum. Methods B59/60, 731 (1991).
26Williamson, D. L., Ozturk, O., Glick, S., Wei, R., and Wilbur, P. J., Nucl. Instrum. Methods B59/60, 737 (1991).
27Polman, A., Vredenberg, A. M., Urbanus, W. H., Deenen, P. J. van, Doom, S., Derks, J., Beek, J. ter, Alberda, H., Krop, H., Attema, I., Haas, E. de, Kersten, H., Roorda, S., Schreutelkamp, R., Bannenberg, J. G., and Saris, F. W., Nucl. Instrum. Methods B37/38, 935 (1989).
28Chu, W. K., Mayer, J. M., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).
29Yin, S. D., Zhang, J. P., Gu, Q., Liu, S. J., Xie, B. Z., Ma, T. L., and Qu, Z. Y., Nucl. Instrum. Methods 191, 147 (1981).
30Doolittle, L.R., Nucl. Instrum. Methods B9, 334 (1985).
31Doolittle, L.R., Nucl. Instrum. Methods B15, 227 (1986).
32and, B. MaurelAmsel, G., Nucl. Instrum. Methods 218, 159 (1983).
33Mayer, J. W. and Rimini, E., Ion Beam Handbook for Materials Analysis (Academic Press, New York, 1977).
34Vredenberg, A. M., unpublished results.
35Silva, J.R.G. da and McLellan, R.B., Mater. Sci. Eng. 26, 83 (1976).
36Jagielski, J., Gawlik, G., Podgorski, P., Turos, A., and Madi, N., Nucl. Instrum. Methods B47, 474 (1990).
37Grabke, H. J., Ber. Bunsenges. phys. Chem. 72, 533 & 541 (1968).
38Moncoffre, N., Hollinger, G., Jaffrezic, H., Marest, G., and Tousset, J., Nucl. Instrum. Methods B7/8, 177 (1985).
39Moncoffre, N., Marest, G., Hiadsi, S., and Tousset, J., Nucl. Instrum. Methods B15, 620 (1986).
40Rauschenbach, B., Nucl. Instrum. Methods B15, 756 (1986).
41Bodart, F., Terwagne, G., and Piette, M., Mater. Sci. Eng. 90, 111 (1987).
42Piette, M., Terwagne, G., Moller, W., and Bodart, F., Mater. Sci. Eng. B2, 189 (1989).
43Terwagne, G., Piette, M., Bodart, F., and Moller, W., Mater. Sci. Eng. A115, 25 (1989).
44Somers, M.A. J., Pers, N. M. van der, Schalkoord, D., and Mittemeijer, E. J., Metall. Trans. A 20A, 1533 (1989).
45Powder diffraction file 6-0696 (International Centre for Diffraction Data, Swarthmore).
46Powder diffraction file 1-1236.
47Powder diffraction file 6-0627.
48Vredenberg, A.M., Ph.D. Thesis, Utrecht State University, 1991.
49Cheng, Liu, Bottger, A., Keijser, Th. H. de, and Mittemeijer, E. J., Scripta Met. & Mat. 24, 509 (1990).
50Jack, K.H., Proc. Roy Soc. A208, 216 (1951).
51Nakajima, K. and Okamoto, S., Appl. Phys. Lett. 54, 2536 (1989); ibid., J. Appl. Phys. 65, 4357 (1989).
52Jack, K. H., Acta Cryst. 5, 404 (1952).
53Vredenberg, A.M., Saris, F.W., Pers, N.M. van der, Colijn, P.F., Keijser, Th. H de, and Mittemeijer, E. J., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 853.
54Ziegler, J. P., Biersack, J. P., and Littmark, U., in The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). The TRIM version '86 was used. The number of displaced atoms calculated using TRIM may vary by a factor of two between versions.
55Fast, J.D. and Verrijp, M.B., J. Iron Steel Inst. 177, 337 (1955).
56Leutenecker, R., Wagner, G., Louis, T., Gonser, U., Guzman, L., and Molinari, A., Mater. Sci. Eng. A115, 229 (1989).
57Barnavon, Th., Jaffrezic, H., Marest, G., Moncoffre, N., Tousset, J., and Fayeulle, S., Mater. Sci. Eng. 69, 531 (1985).
58Kopcewicz, M., Jagielski, J., Turos, A., and Williamson, D.L., J. Appl. Phys. 71, 4217 (1992).
59Gent, A. van, Doom, F. C. van, and Mittemeijer, E. J., Metall. Trans. A 16A, 1371 (1985).
60Kunze, J., Nitrogen and Carbon in Iron and Steel, Thermodynamics (Akademie Verlag, Berlin, 1990).
61PHASES, Thompson, Michael O., Cornell University (1987).
62Gaskell, D. R., Introduction to Metallurgy Thermodynamics (McGraw-Hill, New York, 1981).
63Gerardin, D., Morniroli, J. P., Michel, H., and Gantois, M., J. Mater. Sci. 16, 159 (1981).
64Peterson, N.L., Solid State Physics, edited by Turnbull, D. and Ehrenreich, H. (Academic Press, New York, 1968), Vol. 22.
65Vemuri, V. and Karplus, W. J., Digital Computer Treatment of Partial Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1981), Chap. 6.
66Schwerdtfeger, K., Grieveson, P., and Turkdogan, E. T., Trans. AIME 245, 2461 (1969).
67Hillert, M. and Staffansson, L-I., Acta Chem. Scand. 24, 3618 (1970).
68Hillert, M. and Jarl, M., Metall. Trans. 6A, 553 (1975).

Ion beam synthesis of nitride layers in iron

  • A.M. Vredenberg (a1), C.M. Pérez-Martin (a1), J.S. Custer (a1), D.O. Boerma (a1), L. de Wit (a1), F.W. Saris (a1), N.M. van der Pers (a2), Th.H. de Keijser (a2) and E.J. Mittemeijer (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed