Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T12:54:02.376Z Has data issue: false hasContentIssue false

Ion beam synthesis of nitride layers in iron

Published online by Cambridge University Press:  31 January 2011

A.M. Vredenberg
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
C.M. Pérez-Martin
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
J.S. Custer
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
D.O. Boerma
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
L. de Wit
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
N.M. van der Pers
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Th.H. de Keijser
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
E.J. Mittemeijer
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Get access

Abstract

Stoichiometric iron nitride layers have been synthesized by high dose, high energy nitrogen implantation into Fe using a two-step implantation process. First, a nitrogen preimplantation at ~100 °C is used to form nitride precipitates. A low temperature is necessary to restrict the nitrogen mobility. Second, 1 MeV implantation at ~300 °C leads to the formation of a stoichiometric γ′–Fe4N layer at the position of the preimplanted N atoms. Growth of this nitride layer proceeds by diffusion of the implanted N through either the α–Fe matrix (for 200 or 500 keV preimplantations) or the nitride layer itself (for 1 MeV preimplantation). During annealing above 350 °C the γ′ layers dissolve in a planar fashion, characterized by an activation energy of 2.3 eV. Phase formation during preimplantation and phase transformations during subsequent annealing or hot implantation can be understood from the thermodynamics for the Fe–N system, while the kinetics of layer growth is influenced by the beam-induced defects. The experiment and model suggest that γ′ is not a thermodynamically stable phase below 310 ± 10 °C and should decompose into α (ferrite) and ∊ nitride.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hemment, P.F.L., in Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, PA, 1986), p. 207, and references therein.Google Scholar
2Celler, G. K. and White, A. E., Mater. Res. Soc. Bull. 17, 40 (1992).CrossRefGoogle Scholar
3Petruzzello, T.F., McGee, T.F., Frommer, M.H., Rummennik, V., Walters, P. A., and Chou, C.J., J. Appl. Phys. 58, 4605 (1985).CrossRefGoogle Scholar
4Somers, M. A. J. and Mittemeijer, E. J., Surf. Eng. 3, 123 (1987).CrossRefGoogle Scholar
5Prenosil, B., Harterei-Techn. Mitt. 28, 157 (1973).Google Scholar
6Vredenberg, A. M., Perez-Martin, C. M., Custer, J. S., Boerma, D. O., Wit, L. de, Saris, F. W., Pers, N. M. van der, Keijser, Th. H. de, and Mittemeijer, E.J., Surf. & Coat. Technol. 51, 79 (1992).CrossRefGoogle Scholar
7Jack, D.H. and Jack, K.H., Mater. Sci. Eng. 11, 1 (1973) and references therein.CrossRefGoogle Scholar
8Wriedt, H.A., Gockcen, N.A., and Nafziger, R.H., Bull. Alloy Phase Diagrams 8, 355 (1987).Google Scholar
9Drako, V.M. and Gumansky, G.A., Rad. Eff. 66, 101 (1982).Google Scholar
10Rauschenbach, B. and Kolitsch, A., Phys. Status Solidi 80, 211 (1983).Google Scholar
11Rauschenbach, B., Kolitsch, A., and Homuth, K., Phys. Status Solidi 80, 471 (1983).Google Scholar
12Fayeulle, S., Treheux, D., and Esnouf, C., Nucl. Instrum. Methods B7/8, 171 (1985).Google Scholar
13Follsteadt, D. M., Knapp, J. A., Pope, L. E., and Picraux, S. T., Nucl. Instrum. Methods B12, 359 (1985).Google Scholar
14Rauschenbach, B., Nucl. Instrum. Methods B18, 34 (1986).Google Scholar
15Rauschenbach, B., Homuth, K., and Kastner, G., Nucl. Instrum. Methods B23, 316 (1987).Google Scholar
16Marest, G., Defect Diff. Forum 57, 273 (1988) and references therein.Google Scholar
17Terwagne, G., Tendeloo, G. van, and Donnelly, S. E., J. Appl. Phys. 65, 4225 (1989).CrossRefGoogle Scholar
18Terwagne, G., Piette, M., Bertrand, P., and Bodart, F., Mater. Sci. Eng. B2, 195 (1989).Google Scholar
19Arnold, A., Ramlau, R., and Kaat, E. H. te, Nucl. Instrum. Methods B59/60, 726 (1991).Google Scholar
20Rauschenbach, B., Nucl. Instrum. Methods B53, 35 (1991).Google Scholar
21Vredenberg, A.M., Cui, F.Z., Saris, F.W., Pers, N. M. v.d., and Colijn, P.F., Mater. Sci. Eng. A115, 297 (1989).Google Scholar
22Williamson, D. L., Qu, Yi, Wei, R., Sampath, W. S., and Wilbur, P. J., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L. E., Greene, J., and Smidt, F. A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), p. 409.Google Scholar
23Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., Qu, Y., and Wang, L., J. Trib. 112, 27 (1990).Google Scholar
24Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., and Wang, L., J. Trib. 113, 166 (1991).Google Scholar
25Wei, R., Wilbur, P.J., Ozturk, O., and Williamson, D.L., Nucl. Instrum. Methods B59/60, 731 (1991).Google Scholar
26Williamson, D. L., Ozturk, O., Glick, S., Wei, R., and Wilbur, P. J., Nucl. Instrum. Methods B59/60, 737 (1991).Google Scholar
27Polman, A., Vredenberg, A. M., Urbanus, W. H., Deenen, P. J. van, Doom, S., Derks, J., Beek, J. ter, Alberda, H., Krop, H., Attema, I., Haas, E. de, Kersten, H., Roorda, S., Schreutelkamp, R., Bannenberg, J. G., and Saris, F. W., Nucl. Instrum. Methods B37/38, 935 (1989).Google Scholar
28Chu, W. K., Mayer, J. M., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
29Yin, S. D., Zhang, J. P., Gu, Q., Liu, S. J., Xie, B. Z., Ma, T. L., and Qu, Z. Y., Nucl. Instrum. Methods 191, 147 (1981).Google Scholar
30Doolittle, L.R., Nucl. Instrum. Methods B9, 334 (1985).Google Scholar
31Doolittle, L.R., Nucl. Instrum. Methods B15, 227 (1986).Google Scholar
32and, B. MaurelAmsel, G., Nucl. Instrum. Methods 218, 159 (1983).Google Scholar
33Mayer, J. W. and Rimini, E., Ion Beam Handbook for Materials Analysis (Academic Press, New York, 1977).Google Scholar
34Vredenberg, A. M., unpublished results.Google Scholar
35Silva, J.R.G. da and McLellan, R.B., Mater. Sci. Eng. 26, 83 (1976).CrossRefGoogle Scholar
36Jagielski, J., Gawlik, G., Podgorski, P., Turos, A., and Madi, N., Nucl. Instrum. Methods B47, 474 (1990).Google Scholar
37Grabke, H. J., Ber. Bunsenges. phys. Chem. 72, 533 & 541 (1968).Google Scholar
38Moncoffre, N., Hollinger, G., Jaffrezic, H., Marest, G., and Tousset, J., Nucl. Instrum. Methods B7/8, 177 (1985).Google Scholar
39Moncoffre, N., Marest, G., Hiadsi, S., and Tousset, J., Nucl. Instrum. Methods B15, 620 (1986).Google Scholar
40Rauschenbach, B., Nucl. Instrum. Methods B15, 756 (1986).Google Scholar
41Bodart, F., Terwagne, G., and Piette, M., Mater. Sci. Eng. 90, 111 (1987).CrossRefGoogle Scholar
42Piette, M., Terwagne, G., Moller, W., and Bodart, F., Mater. Sci. Eng. B2, 189 (1989).Google Scholar
43Terwagne, G., Piette, M., Bodart, F., and Moller, W., Mater. Sci. Eng. A115, 25 (1989).Google Scholar
44Somers, M.A. J., Pers, N. M. van der, Schalkoord, D., and Mittemeijer, E. J., Metall. Trans. A 20A, 1533 (1989).Google Scholar
45Powder diffraction file 6-0696 (International Centre for Diffraction Data, Swarthmore).Google Scholar
46Powder diffraction file 1-1236.Google Scholar
47Powder diffraction file 6-0627.Google Scholar
48Vredenberg, A.M., Ph.D. Thesis, Utrecht State University, 1991.Google Scholar
49Cheng, Liu, Bottger, A., Keijser, Th. H. de, and Mittemeijer, E. J., Scripta Met. & Mat. 24, 509 (1990).CrossRefGoogle Scholar
50Jack, K.H., Proc. Roy Soc. A208, 216 (1951).Google Scholar
51Nakajima, K. and Okamoto, S., Appl. Phys. Lett. 54, 2536 (1989); ibid., J. Appl. Phys. 65, 4357 (1989).Google Scholar
52Jack, K. H., Acta Cryst. 5, 404 (1952).Google Scholar
53Vredenberg, A.M., Saris, F.W., Pers, N.M. van der, Colijn, P.F., Keijser, Th. H de, and Mittemeijer, E. J., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 853.Google Scholar
54Ziegler, J. P., Biersack, J. P., and Littmark, U., in The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). The TRIM version '86 was used. The number of displaced atoms calculated using TRIM may vary by a factor of two between versions.Google Scholar
55Fast, J.D. and Verrijp, M.B., J. Iron Steel Inst. 177, 337 (1955).Google Scholar
56Leutenecker, R., Wagner, G., Louis, T., Gonser, U., Guzman, L., and Molinari, A., Mater. Sci. Eng. A115, 229 (1989).Google Scholar
57Barnavon, Th., Jaffrezic, H., Marest, G., Moncoffre, N., Tousset, J., and Fayeulle, S., Mater. Sci. Eng. 69, 531 (1985).CrossRefGoogle Scholar
58Kopcewicz, M., Jagielski, J., Turos, A., and Williamson, D.L., J. Appl. Phys. 71, 4217 (1992).Google Scholar
59Gent, A. van, Doom, F. C. van, and Mittemeijer, E. J., Metall. Trans. A 16A, 1371 (1985).Google Scholar
60Kunze, J., Nitrogen and Carbon in Iron and Steel, Thermodynamics (Akademie Verlag, Berlin, 1990).Google Scholar
61PHASES, Thompson, Michael O., Cornell University (1987).Google Scholar
62Gaskell, D. R., Introduction to Metallurgy Thermodynamics (McGraw-Hill, New York, 1981).Google Scholar
63Gerardin, D., Morniroli, J. P., Michel, H., and Gantois, M., J. Mater. Sci. 16, 159 (1981).CrossRefGoogle Scholar
64Peterson, N.L., Solid State Physics, edited by Turnbull, D. and Ehrenreich, H. (Academic Press, New York, 1968), Vol. 22.Google Scholar
65Vemuri, V. and Karplus, W. J., Digital Computer Treatment of Partial Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1981), Chap. 6.Google Scholar
66Schwerdtfeger, K., Grieveson, P., and Turkdogan, E. T., Trans. AIME 245, 2461 (1969).Google Scholar
67Hillert, M. and Staffansson, L-I., Acta Chem. Scand. 24, 3618 (1970).CrossRefGoogle Scholar
68Hillert, M. and Jarl, M., Metall. Trans. 6A, 553 (1975).Google Scholar