Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T05:23:40.642Z Has data issue: false hasContentIssue false

Interfacial structure and chemistry in a ceramic/polymer composite material

Published online by Cambridge University Press:  31 January 2011

Oludele O. Popoola
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 105 South Goodwin Avenue, Urbana, Illinois 61801
Waltraud M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 105 South Goodwin Avenue, Urbana, Illinois 61801
Get access

Abstract

The microstructure and microchemistry of ceramic/polymer interfaces in a calcium aluminate/polyvinyl alcohol composite material have been studied using transmission electron microscopy (TEM), high resolution electron microscopy (HREM), x-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS). Interfaces consisted of an amorphous interphase layer, inside of which were dispersed metastably retained CaAl2O5 · 8H2O crystallites. The amorphous phase was a mixture of the hydration products of calcium aluminate and aluminum–crosslinked, polyvinyl alcohol. The crystalline hydration product CaAl2O5 · 8H2O was metastably retained due to polymer poisoning of nucleation sites and significant reduction of conversion kinetics.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rühle, M. and Evans, A. G., Proc. Acta/Scripta Metall. Conf. on Ceramic/Metal Interfaces, edited by Rühle, M. and Evans, A. G., 96 (1989).Google Scholar
2.Evans, A. G. and Rühle, M., in Electronic Packaging Materials Science, edited by Giess, E. A., Tu, K-N., and Uhlmann, D. R. (Mater. Res. Soc. Symp. Proc. 40, Pittsburgh, PA, 1985), p. 153.Google Scholar
3.Piggot, M. R., in Interfaces in Composites, edited by Pantano, C. G. and Chen, E. J. H. (Mater. Res. Soc. Symp. Proc. 170, Pittsburgh, PA, 1990), p. 265.Google Scholar
4.Wilson, A. M., in Polyimides: Synthesis, Characterization and Applications, edited by Mittal, K. L. (Plenum Press, New York, 1984), Vol. 2, p. 715.Google Scholar
5.Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., LeGoues, F. K., and Silverman, B. D., J. Vac. Sci. Technol. A3, 739 (1985).CrossRefGoogle Scholar
6.Burkstrand, J. M., J. Appl. Phys. 52 (7), 4795 (1981).CrossRefGoogle Scholar
7.Chou, N. J. and Tang, C. H., J. Vac. Sci. Technol. A2 (2), 751 (1984).CrossRefGoogle Scholar
8.Bartha, J. W., Hahn, P. O., LeGoues, F., and Ho, P. S., J. Vac. Sci. Technol. A3 (3), 1390 (1985).CrossRefGoogle Scholar
9.Silverman, D. B., Macromolecules (in press).Google Scholar
10.Clark, D. T., J. Polym. Sci. 14, 533 (1976).Google Scholar
11.Burkstrand, J. M., Phys. Rev. B 20, 4853 (1979).CrossRefGoogle Scholar
12.Faupel, F., Gupta, D., and Silverman, B. D., Appl. Phys. Lett. 55, 357 (1989).CrossRefGoogle Scholar
13.Curie, J., Depelsenaire, P., Groleau, R., and Sacher, E., J. Colloid Interface Sci. 97, 410 (1984).CrossRefGoogle Scholar
14.Sanda, P. N., Bartha, J. W., Silverman, D. B., Ho, P. S., and Rossi, A. R., in Ref. 2, p. 283.Google Scholar
15.Dekoven, B. M. and Hagans, P. L., Appl. Surf. Sci. 27, 199 (1986).CrossRefGoogle Scholar
16.Tan, S. R., Howard, A. J., and Birchall, J. D., Philos. Trans. R. Soc. London A322, 479 (1987).Google Scholar
17.Russell, P. P. and Berg, M., 1988 Proceedings of the International Society of Hybrid Microelectronics, 145 (1988).Google Scholar
18.Sliva, P., Cross, L. E., Gunuraja, T. R., and Schetz, B. E., Mater. Lett. 4 (10), 409 (1986).CrossRefGoogle Scholar
19.Sinclair, W. and Groves, G. W., J. Mater. Sci. 20, 2846 (1985).CrossRefGoogle Scholar
20.Popoola, O. O., Kriven, W. M., and Young, J. F., Ultramicroscopy 37, 318 (1991).CrossRefGoogle Scholar
21.Popoola, O. O., Kriven, W. M., and Young, J. F., J. Am. Ceram. Soc. 74 (8), 1928 (1991).CrossRefGoogle Scholar
22.Poon, C. S., Wassell, L. E., and Groves, G. W., Mater. Sci. Technol., 993 (1980).Google Scholar
23.Popoola, O. O., Kriven, W. M., and Young, J. F., in Advanced Cementitious Systems: Mechanisms and Properties, edited by Glasser, F. P., Pratt, P. L., Mason, T. O., Young, J. F., and McCarthy, G. J. (Mater. Res. Soc. Symp. Proc. 245, Pittsburgh, PA, 1992).Google Scholar
24.Desai, R. A., Thesis, M. S., University of Illinois (1990).Google Scholar
25.Pechini, M. P., U.S. Patent No. 3 330697 (1967).Google Scholar
26.Lessing, P. A., Am. Ceram. Soc. Bull. 168, 5, 1002 (1989).Google Scholar
27.Gulgun, M., Nettleship, I., Popoola, O., and Kriven, W. M., in Advanced Cementitious Systems: Mechanisms and Properties, edited by Glasser, F. P., Pratt, P. L., Mason, T. O., Young, J. F., and McCarthy, G. J. (Mater. Res. Soc. Symp. Proc. 245, Pittsburgh, PA, 1992).Google Scholar
28.Clark, D. T. and Thomas, H. R., J. Polym. Sci., Polymer Chem. Ed. 14, 1671 (1976).CrossRefGoogle Scholar
29.Dougill, M. W., Nature 180, 292 (1957).CrossRefGoogle Scholar
30.Ball, M. C., CMarsh, M., Simmons, R. E., Sutherland, I., and Symons, M. R. C., J. Mater. Sci. 23, 1431 (1988).CrossRefGoogle Scholar
31.Rogers, J. W., Jr., Kebber, J. A., and Anderson, M. A., Appl. Surf. Sci. 35, 423 (19881989).CrossRefGoogle Scholar
32.Akter, S., Zhou, X. L., and White, J. M., Appl. Surf. Sci. 37, 210 (1989).Google Scholar
33. CGeorge, M., in Structure and Performance of Cements, edited by Barnes, P. (Appl. Sci. Publ., London, U. K., 1983).Google Scholar
34.Taylor, H. F. W., in Cement Chemistry (Academic Press, New York, 1990), Chap. 10.Google Scholar
35.Dosch, W., Proc. XVth Conf. on Clay Minerals, Pittsburgh, PA, 273 (1967).Google Scholar
36.Young, J. F., Cem. and Concr. Res. 1, 113 (1971).CrossRefGoogle Scholar