Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T12:35:12.803Z Has data issue: false hasContentIssue false

Growth kinetics of high Tc phase in Bi–Sr–Ca–Cu–O thick films

Published online by Cambridge University Press:  31 January 2011

Sangeeta Chaudhry
Affiliation:
National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India
Neeraj Khare
Affiliation:
National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India
A.K. Gupta
Affiliation:
National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India
Get access

Abstract

Thick films of Bi–Sr–Ca–Cu–O on (100) MgO substrates have been prepared by the screen printing technique with the starting composition of 1112. The annealing process involves a two-step heat treatment. The first-step temperature is chosen between 874 °C and 898 °C for 45 min followed by slow cooling (2 °C/min) to 864 °C. In the second step, the films are kept at 864 °C for a time varying from 0 to 104 h. The Tc (R = 0) and intensity of the characteristic peaks of the high Tc and the low Tc phases in the x-ray diffraction pattern are found to be dependent on the first-step temperature and the duration of the second step. The process of crystallization and the growth of plate-like grains as a function of annealing time at the second step are studied using Scanning Electron Microscopy (SEM). Kinetics of the growth of the high Tc phase has been explained in terms of a reaction mechanism involving the first and second annealing steps.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bailey, A., Alvarez, G., Puzzer, T., Town, S. L., Russell, G. J., and Taylor, K. N. R., Physica C 167, 133 (1990).Google Scholar
2.Ginley, D. S., Mitchell, M. A., Kwak, J. F., Venturini, E. L., Baughman, R. J., and Fu, W., J. Mater. Res. 4, 501 (1989).Google Scholar
3.Meszaros, S., Vad, K., Halasz, G., Hegman, N., and Katona, G., Supercond. Sci. Technol. 4, S367 (1991).Google Scholar
4.Khare, Neeraj, Chaudhry, Sangeeta, Gupta, A. K., Tomar, V. S., and Ojha, V. N., Physica B 165 & 166, 1499 (1990).Google Scholar
5.Hoshino, K., Takahara, H., and Fukutomi, M., Jpn. J. Appl. Phys. 27, L1297 (1988).CrossRefGoogle Scholar
6.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421 (1987).Google Scholar
7.Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).Google Scholar
8.Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., van Dover, R. B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W., Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).Google Scholar
9.Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).Google Scholar
10.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
11.Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. 27, L 1476 (1988).Google Scholar
12.Shi, D., Tang, M., Vandervoort, K., and Claus, H., Phys. Rev. B 39, 9091 (1989).Google Scholar
13.Sumiyama, A., Yoshitomi, T., Endo, H., Tsuchiya, J., Kijima, N., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L542 (1988).Google Scholar
14.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).Google Scholar
15.Gao, W., Li, S-C., Rudman, D. A., and Sande, J. B. Vander, Physica C 167, 395 (1990).Google Scholar
16.Gao, W., Li, S., Parrella, R., Rudman, D. A., and Sande, J. B. Vander, J. Mater. Res. 5, 2633 (1990).Google Scholar
17.Shah, S. I., Jones, G. A., and Subramanian, M. A., Appl. Phys. Lett. 53, 429 (1988).Google Scholar