Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T00:27:43.549Z Has data issue: false hasContentIssue false

A critical analysis of existing models for plastic flow in Ni3Al: Comparisons with transient deformation experiments

Published online by Cambridge University Press:  31 January 2011

K.J. Hemker*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
M.J. Mills
Affiliation:
Materials Department, Sandia National Laboratories, Livermore, California 94551-0969
W.D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
*
a)Present address: Institut de Génie Atomique, ècole Polytechnique Fédérale, 1015 Lausanne, Switzerland.
Get access

Abstract

A review of the intermediate temperature creep properties of Ni3Al indicates that octahedral glide, the mechanism associated with the anomalous temperature dependence of yielding in this alloy, is exhausted during primary creep. Comparisons of this primary creep transient with the various models proposed to explain the anomalous yielding behavior suggest that additional transient experiments are needed to fully characterize octahedral glide in this alloy. Cottrell–Stokes type temperature change experiments, stress relaxation experiments, and deformation exhaustion/temperature drop tests have been conducted in an attempt to better characterize octahedral glide in Ni3Al. The results of these transient experiments indicate that octahedral glide is only partially a thermally reversible process and that the formation of dislocation substructure, KW locks, plays an important role in determining the flow strength of this alloy. These experiments also suggest that flow in Ni3Al should not be viewed as a viscous drag process, but can best be described as a “pure-metal-like” process involving the rapid motion of a small number of highly mobile dislocations. The stochastic nature of dislocation motion and the importance of substructure formation are emphasized and a description of octahedral glide that is consistent with the transient deformation experiments is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Takeuchi, S. and Kuramoto, E., Acta Metall. 26, 207 (1978).Google Scholar
2.Paidar, V., Pope, D. P., and Vitek, V., Acta Metall. 32, 435 (1984).CrossRefGoogle Scholar
3.Sun, Y. Q. and Hazzledine, P. M., Philos. Mag. A 58 (4), 603 (1988).CrossRefGoogle Scholar
4.Veyssière, P., in High Temperature Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 175.Google Scholar
5.Mills, M. J., Baluc, N., and Karnthaler, H. P., in High Temperature Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 203.Google Scholar
6.Caillard, D., Clement, N., Couret, A., Lours, P., and Coujou, A., Philos. Mag. Lett. 58, 263 (1988).CrossRefGoogle Scholar
7.Caillard, D., Couret, A., Clement, N., Farenc, S., and Molenat, G., Proc. 9th ICSMA, edited by Brandon, D. G., Chaim, R., and Rosen, A. (Freund Publishing, 1991), p. 139.Google Scholar
8.Vitek, V. and Sodani, Y., Scripta Metall. 25, 939 (1991).CrossRefGoogle Scholar
9.Hirsch, P. B., Proc. 9th ICSMA, edited by Brandon, D. G., Chaim, R., and Rosen, A. (Freund Publishing, 1991), p. 3.Google Scholar
10.Hirsch, P. B., Philos. Mag. A (1991, in press).Google Scholar
11.Hemker, K. J., Mills, M. J., and Nix, W. D., Acta Metall. et Mater. 39, 1901 (1990).CrossRefGoogle Scholar
12.Cottrell, A. H. and Stokes, R. J., Proc. Roy. Soc. A233, 17 (1955).Google Scholar
13.Sherby, O. D., Klundt, R. H., and Miller, A. K., Metall. Trans. A 8A, 843 (1977).CrossRefGoogle Scholar
14.Yaney, D. L., Gibeling, J. C., and Nix, W. D., Acta Metall. 35, 1391 (1987).CrossRefGoogle Scholar
15.Yamaguchi, M., Paidar, V., Pope, D. P., and Vitek, V., Philos. Mag. 45, 867 (1982).CrossRefGoogle Scholar
16.Baluc, N., Karnthaler, H. P., and Mills, M. J., Int. Phys. Conf., Sec. 2, 463 (1988).Google Scholar
17.Paidar, V., Yamaguchi, M., Pope, D. P., and Vitek, V., Philos. Mag. 45, 883 (1982).CrossRefGoogle Scholar
18.Crimp, M. A. and Hazzledine, P. M., in High Temperature Inlermetallic Alloys HI, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 131.Google Scholar
19.Mills, M. J., Proc. Elec. Micro. Soc. of Am. 47, 302 (1989).CrossRefGoogle Scholar
20.Kear, B. H. and Wilsdorf, H. G. F., Trans-AIME 224, 382 (1962).Google Scholar
21.Kear, B. H., Acta Metall. 12, 555 (1964).CrossRefGoogle Scholar
22.Kear, B. H. and , Hornbecker, Trans. ASM 59, 155 (1966).Google Scholar
23.Copley, S. M. and Kear, B. H., Trans. AIME 239, 977 (1967).Google Scholar
24.Lall, C., Chin, S., and Pope, D. P., Metall. Trans. A 10A, 1323 (1979).CrossRefGoogle Scholar
25.Ezz, S. S., Pope, D. P., and Paidar, V., Acta Metall. 30, 921 (1982).CrossRefGoogle Scholar
26.Umakoshi, Y., Pope, D. P., and Vitek, V., Acta Metall. 32, 449 (1984).CrossRefGoogle Scholar
27.Leverant, G. R., Gell, W., and Hopkins, S. W., Mater. Sci. Eng. 8, 125 (1971).CrossRefGoogle Scholar
28.Korner, A. and Karnthaler, H. P., Philos. Mag. A 44 (2), 275 (1981).CrossRefGoogle Scholar
29.Sun, Y. Q., Ph.D. Thesis, Oxford University (1990).Google Scholar
30.Dimiduk, D., Ph.D. Thesis, Carnegie Mellon University (1989).Google Scholar
31.Baluc, N., Ph.D. These No. 886, Ecole Polytechnique Federale de Lausanne (1990).Google Scholar
32.Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13 (7), 384 (1967).Google Scholar
33.Davies, R. G. and Stoloff, N. S., Trans. AIME 233, 714 (1965).Google Scholar
34.Gupta, I. and Li, J. C. M., Metall. Trans. 1, 2323 (1970).CrossRefGoogle Scholar
35.Stoiber, J., Bonneville, J., and Martin, J. L., Proc. 8th ICSMA, edited by Kettunen, P. O., Lepisto, T. K., and Lehtonen, M. E., (Pergamon Press, Oxford, 1988).Google Scholar
36.Thornton, D. H., Davies, R. G., and Johnston, T. L., Metall. Trans. 1, 207 (1970).CrossRefGoogle Scholar