Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T19:16:16.976Z Has data issue: false hasContentIssue false

Crack-bridging Processes and Fracture Resistance of a Discontinuous Fiber-reinforced Brittle Matrix Composite

Published online by Cambridge University Press:  31 January 2011

Takashi Akatsu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
Yasuhiro Tanabe
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
Eiichi Yasuda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
Get access

Abstract

A simple bridging model is proposed for the toughening of a discontinuous fiber-reinforced brittle matrix composite, in which the frictional bridging of fibers during, as well as after, the interfacial debonding is considered. The R-curve behavior and the work-of-fracture of the composite can be theoretically predicted by the computation of the bridging model applying material parameters, such as fiber volume fraction, size and shape of fibers, fiber tensile strength, elastic moduli of fibers and matrix, fracture toughness and work-of-fracture of matrix, and frictional shear stress at interface. The experimental result obtained from a SiC-whisker-reinforced Al2O3 composite confirms the theoretical predictions of the present bridging model. Through the model calculation, the R-curve, crack profile, and bridging stresses of the composite can be estimated correspondingly to the bridging processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Evans, A.G., J. Am. Ceram. Soc. 73, 187206 (1990).Google Scholar
2.Cook, R. F. and Clarke, D. R., Acta Metall. 36, 555562 (1988).Google Scholar
3.Becher, P. F., J. Am. Ceram. Soc. 74, 255269 (1991).CrossRefGoogle Scholar
4.Ueno, K. and Toibata, Y., Yogyo-Kyokai-Shi 91, 491497 (1983).CrossRefGoogle Scholar
5.Yasuda, E., Akatsu, T., and Tanabe, Y., J. Ceram. Soc. Jpn. 99, 5257 (1991).CrossRefGoogle Scholar
6.Lange, F. F., Am. Ceram. Soc. Bull. 62, 13691371 (1983).Google Scholar
7.Rodel, J., Kelly, J.F., and Lawn, B. R., J. Am. Ceram. Soc. 73, 33133318 (1990).Google Scholar
8.Hu, X-Z., Lutz, E.H., and Swain, M.V., J. Am. Ceram. Soc. 74, 18281832 (1991).Google Scholar
9.Choi, S. R., Salem, J.A., and Sanders, W.A., J. Am. Ceram. Soc. 75, 15081511 (1992).Google Scholar
10.McCartney, L.N., Proc. Roy. Soc. Lond. A409, 329350 (1987).Google Scholar
11.Becher, P. F., Hsueh, C-H., Angelini, P., and Tiegs, T. N., J. Am. Ceram. Soc. 71, 10501061 (1988).CrossRefGoogle Scholar
12.Bennison, S. J. and Lawn, B. R., Acta Metall. 37, 26592671 (1989).Google Scholar
13.Cox, H.L., Br. J. Appl. Phys. 3, 7279 (1952).CrossRefGoogle Scholar
14.Marshall, D.B., Cox, B. N., and Evans, A.G., Acta Metall. 33, 20132021 (1985).CrossRefGoogle Scholar
15.Barenblatt, G.I., Adv. Appl. Mech. 7, 55129 (1962).CrossRefGoogle Scholar
16.Nakayama, J., J. Am. Ceram. Soc. 48, 583587 (1965).Google Scholar
17.Akatsu, T., Kokubo, S., Takaya, T., Tanabe, Y., Sakai, M., and Yasuda, E., Proc. 11th Korea-Japan Seminar on New Ceramics, 128131 (1994).Google Scholar
18.Akatsu, T., Yasuda, E., and Sakai, M., in Fracture Mechanics of Ceramics, edited by Bradt, R. C.et al. (Plenum, New York, 1996), Vol. 11, pp. 245260.Google Scholar
19.Akatsu, T., Tanabe, Y., Matsuo, Y., and Yasuda, E., J. Ceram. Soc. Jpn. 100, 12971303 (1992).CrossRefGoogle Scholar
20.Samanta, S. C. and Musikant, S., Ceram. Eng. Sci. Proc. 6, 663672 (1985).Google Scholar
21.Petrovic, J. J., Milewski, J. V., Rohr, D. L., and Gac, F. D., J. Mater. Sci. 20, 11671177 (1985).Google Scholar
22.Majumdar, S., Kupperman, D., and Singh, J., J. Am. Ceram. Soc. 71, 858863 (1988).Google Scholar